Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966734812> ?p ?o ?g. }
- W2966734812 endingPage "644" @default.
- W2966734812 startingPage "634" @default.
- W2966734812 abstract "High Performance Computing (HPC) systems are complex machines with heterogeneous components that can break or malfunction. Automated anomaly detection in these systems is a challenging and critical task, as HPC systems are expected to work 24/7. The majority of the current state-of-the-art methods dealing with this problem are Machine Learning techniques or statistical models that rely on a supervised approach, namely the detection mechanism is trained to recognize a fixed number of different states (i.e. normal and anomalous conditions). In this paper a novel semi-supervised approach for anomaly detection in supercomputers is proposed, based on a type of neural network called autoencoder. The approach learns the normal state of the supercomputer nodes and after the training phase can be used to discern anomalous conditions from normal behavior; in doing so it relies only on the availability of data characterizing only the normal state of the system. This is different from supervised methods that require data sets with many examples of anomalous states, which are in general very rare and/or hard to obtain. The approach was tested on a real-life High Performance Computing system equipped with a monitoring infrastructure capable to generate large amount of data describing the system state. The proposed approach definitely outperforms the best current techniques for semi-supervised anomaly detection, with an increase in accuracy detection of around 12%. Two different implementations are discussed: one where each supercomputer node has a specific model and one with a single, generalized model for all nodes, in order to explore the trade-off between accuracy and ease of deployment." @default.
- W2966734812 created "2019-08-13" @default.
- W2966734812 creator A5027645414 @default.
- W2966734812 creator A5036407549 @default.
- W2966734812 creator A5047906923 @default.
- W2966734812 creator A5060838349 @default.
- W2966734812 creator A5071259603 @default.
- W2966734812 date "2019-10-01" @default.
- W2966734812 modified "2023-10-16" @default.
- W2966734812 title "A semisupervised autoencoder-based approach for anomaly detection in high performance computing systems" @default.
- W2966734812 cites W1969733464 @default.
- W2966734812 cites W1970978220 @default.
- W2966734812 cites W1982063824 @default.
- W2966734812 cites W1989682464 @default.
- W2966734812 cites W2014540231 @default.
- W2966734812 cites W2035883480 @default.
- W2966734812 cites W2045064676 @default.
- W2966734812 cites W2095345875 @default.
- W2966734812 cites W2116335710 @default.
- W2966734812 cites W2137130182 @default.
- W2966734812 cites W2165384099 @default.
- W2966734812 cites W2165485434 @default.
- W2966734812 cites W2268212270 @default.
- W2966734812 cites W2337344967 @default.
- W2966734812 cites W2347027361 @default.
- W2966734812 cites W2461729787 @default.
- W2966734812 cites W2468457481 @default.
- W2966734812 cites W2519348275 @default.
- W2966734812 cites W2762020946 @default.
- W2966734812 cites W2808378779 @default.
- W2966734812 cites W2883745209 @default.
- W2966734812 cites W2892709813 @default.
- W2966734812 cites W2901773810 @default.
- W2966734812 cites W2911964244 @default.
- W2966734812 cites W2964032056 @default.
- W2966734812 cites W834036986 @default.
- W2966734812 doi "https://doi.org/10.1016/j.engappai.2019.07.008" @default.
- W2966734812 hasPublicationYear "2019" @default.
- W2966734812 type Work @default.
- W2966734812 sameAs 2966734812 @default.
- W2966734812 citedByCount "67" @default.
- W2966734812 countsByYear W29667348122019 @default.
- W2966734812 countsByYear W29667348122020 @default.
- W2966734812 countsByYear W29667348122021 @default.
- W2966734812 countsByYear W29667348122022 @default.
- W2966734812 countsByYear W29667348122023 @default.
- W2966734812 crossrefType "journal-article" @default.
- W2966734812 hasAuthorship W2966734812A5027645414 @default.
- W2966734812 hasAuthorship W2966734812A5036407549 @default.
- W2966734812 hasAuthorship W2966734812A5047906923 @default.
- W2966734812 hasAuthorship W2966734812A5060838349 @default.
- W2966734812 hasAuthorship W2966734812A5071259603 @default.
- W2966734812 hasBestOaLocation W29667348122 @default.
- W2966734812 hasConcept C101738243 @default.
- W2966734812 hasConcept C119857082 @default.
- W2966734812 hasConcept C121332964 @default.
- W2966734812 hasConcept C124101348 @default.
- W2966734812 hasConcept C127413603 @default.
- W2966734812 hasConcept C12997251 @default.
- W2966734812 hasConcept C154945302 @default.
- W2966734812 hasConcept C173608175 @default.
- W2966734812 hasConcept C26873012 @default.
- W2966734812 hasConcept C41008148 @default.
- W2966734812 hasConcept C50644808 @default.
- W2966734812 hasConcept C62611344 @default.
- W2966734812 hasConcept C66938386 @default.
- W2966734812 hasConcept C739882 @default.
- W2966734812 hasConcept C83283714 @default.
- W2966734812 hasConceptScore W2966734812C101738243 @default.
- W2966734812 hasConceptScore W2966734812C119857082 @default.
- W2966734812 hasConceptScore W2966734812C121332964 @default.
- W2966734812 hasConceptScore W2966734812C124101348 @default.
- W2966734812 hasConceptScore W2966734812C127413603 @default.
- W2966734812 hasConceptScore W2966734812C12997251 @default.
- W2966734812 hasConceptScore W2966734812C154945302 @default.
- W2966734812 hasConceptScore W2966734812C173608175 @default.
- W2966734812 hasConceptScore W2966734812C26873012 @default.
- W2966734812 hasConceptScore W2966734812C41008148 @default.
- W2966734812 hasConceptScore W2966734812C50644808 @default.
- W2966734812 hasConceptScore W2966734812C62611344 @default.
- W2966734812 hasConceptScore W2966734812C66938386 @default.
- W2966734812 hasConceptScore W2966734812C739882 @default.
- W2966734812 hasConceptScore W2966734812C83283714 @default.
- W2966734812 hasLocation W29667348121 @default.
- W2966734812 hasLocation W29667348122 @default.
- W2966734812 hasOpenAccess W2966734812 @default.
- W2966734812 hasPrimaryLocation W29667348121 @default.
- W2966734812 hasRelatedWork W2806741695 @default.
- W2966734812 hasRelatedWork W2918377632 @default.
- W2966734812 hasRelatedWork W3017266184 @default.
- W2966734812 hasRelatedWork W3046391934 @default.
- W2966734812 hasRelatedWork W3186512740 @default.
- W2966734812 hasRelatedWork W3194885736 @default.
- W2966734812 hasRelatedWork W3202913553 @default.
- W2966734812 hasRelatedWork W3210364259 @default.
- W2966734812 hasRelatedWork W4290647774 @default.
- W2966734812 hasRelatedWork W4363671829 @default.
- W2966734812 hasVolume "85" @default.