Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966746591> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2966746591 abstract "Touch is regarded as an important channel in human-robot interaction. This paper presents a touch gesture recognition system that can be applied to hard-skinned robots. Related studies have been based on traditional machine learning methods with hand-crafted features that make it difficult for developers to access optimal features that they cannot imagine. To prevent this, our proposed touch gesture recognition system uses a 1D convolutional neural network (1D CNN) that can learn features from data directly. The recognition system classifies four touch patterns: hit, pat, push, and rub. The results show an average recognition rate of 90.5%, which is higher than one of the related studies. Additionally, we verify the effect of touch sensor orientation on recognition performance. Many studies achieved accuracy with a touch sensor installed in only one orientation. In this study, we experimentally confirm that a classifier trained with data from a vertically installed touch sensor shows degraded performance on test data from a horizontally installed touch sensor, and vice versa. To achieve high recognition accuracy for both orientations, the network is newly trained with data from both vertically and horizontally installed sensors. The results show an 88.5% and 89.1% accuracy rate for the vertical and horizontal test data, respectively. That is, the model achieves reliable performance in both orientations whereas classifiers trained with data from a certain orientation cannot show good performance on test data from the different orientation." @default.
- W2966746591 created "2019-08-13" @default.
- W2966746591 creator A5012645437 @default.
- W2966746591 creator A5048380146 @default.
- W2966746591 creator A5049779043 @default.
- W2966746591 creator A5072713763 @default.
- W2966746591 date "2019-06-01" @default.
- W2966746591 modified "2023-10-16" @default.
- W2966746591 title "Touch Gesture Recognition System based on 1D Convolutional Neural Network with Two Touch Sensor Orientation Settings" @default.
- W2966746591 cites W1986535023 @default.
- W2966746591 cites W1994474201 @default.
- W2966746591 cites W1997714027 @default.
- W2966746591 cites W2037998595 @default.
- W2966746591 cites W2058968347 @default.
- W2966746591 cites W2096569962 @default.
- W2966746591 cites W2101665212 @default.
- W2966746591 cites W2110551327 @default.
- W2966746591 cites W2130649401 @default.
- W2966746591 cites W2132791659 @default.
- W2966746591 cites W2137888413 @default.
- W2966746591 cites W2140797606 @default.
- W2966746591 cites W2164490004 @default.
- W2966746591 cites W4205559380 @default.
- W2966746591 doi "https://doi.org/10.1109/urai.2019.8768638" @default.
- W2966746591 hasPublicationYear "2019" @default.
- W2966746591 type Work @default.
- W2966746591 sameAs 2966746591 @default.
- W2966746591 citedByCount "1" @default.
- W2966746591 countsByYear W29667465912021 @default.
- W2966746591 crossrefType "proceedings-article" @default.
- W2966746591 hasAuthorship W2966746591A5012645437 @default.
- W2966746591 hasAuthorship W2966746591A5048380146 @default.
- W2966746591 hasAuthorship W2966746591A5049779043 @default.
- W2966746591 hasAuthorship W2966746591A5072713763 @default.
- W2966746591 hasConcept C121687571 @default.
- W2966746591 hasConcept C153180895 @default.
- W2966746591 hasConcept C154945302 @default.
- W2966746591 hasConcept C159437735 @default.
- W2966746591 hasConcept C16345878 @default.
- W2966746591 hasConcept C16910744 @default.
- W2966746591 hasConcept C199360897 @default.
- W2966746591 hasConcept C207347870 @default.
- W2966746591 hasConcept C2524010 @default.
- W2966746591 hasConcept C31972630 @default.
- W2966746591 hasConcept C33923547 @default.
- W2966746591 hasConcept C41008148 @default.
- W2966746591 hasConcept C81363708 @default.
- W2966746591 hasConcept C90509273 @default.
- W2966746591 hasConcept C95623464 @default.
- W2966746591 hasConceptScore W2966746591C121687571 @default.
- W2966746591 hasConceptScore W2966746591C153180895 @default.
- W2966746591 hasConceptScore W2966746591C154945302 @default.
- W2966746591 hasConceptScore W2966746591C159437735 @default.
- W2966746591 hasConceptScore W2966746591C16345878 @default.
- W2966746591 hasConceptScore W2966746591C16910744 @default.
- W2966746591 hasConceptScore W2966746591C199360897 @default.
- W2966746591 hasConceptScore W2966746591C207347870 @default.
- W2966746591 hasConceptScore W2966746591C2524010 @default.
- W2966746591 hasConceptScore W2966746591C31972630 @default.
- W2966746591 hasConceptScore W2966746591C33923547 @default.
- W2966746591 hasConceptScore W2966746591C41008148 @default.
- W2966746591 hasConceptScore W2966746591C81363708 @default.
- W2966746591 hasConceptScore W2966746591C90509273 @default.
- W2966746591 hasConceptScore W2966746591C95623464 @default.
- W2966746591 hasLocation W29667465911 @default.
- W2966746591 hasOpenAccess W2966746591 @default.
- W2966746591 hasPrimaryLocation W29667465911 @default.
- W2966746591 hasRelatedWork W1445015017 @default.
- W2966746591 hasRelatedWork W2057046019 @default.
- W2966746591 hasRelatedWork W2107891793 @default.
- W2966746591 hasRelatedWork W2146840215 @default.
- W2966746591 hasRelatedWork W2355755187 @default.
- W2966746591 hasRelatedWork W2563096758 @default.
- W2966746591 hasRelatedWork W2920938200 @default.
- W2966746591 hasRelatedWork W2946097822 @default.
- W2966746591 hasRelatedWork W2966746591 @default.
- W2966746591 hasRelatedWork W4225852842 @default.
- W2966746591 isParatext "false" @default.
- W2966746591 isRetracted "false" @default.
- W2966746591 magId "2966746591" @default.
- W2966746591 workType "article" @default.