Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966909581> ?p ?o ?g. }
- W2966909581 endingPage "162" @default.
- W2966909581 startingPage "162" @default.
- W2966909581 abstract "Balanced partitioning is often a crucial first step in solving large-scale graph optimization problems, for example, in some cases, a big graph can be chopped into pieces that fit on one machine to be processed independently before stitching the results together, leading to certain suboptimality from the interaction among different pieces. In other cases, links between different parts may show up in the running time and/or network communications cost, hence the desire to have small cut size. We study a distributed balanced-partitioning problem where the goal is to partition the vertices of a given graph into k pieces so as to minimize the total cut size. Our algorithm is composed of a few steps that are easily implementable in distributed computation frameworks such as MapReduce. The algorithm first embeds nodes of the graph onto a line, and then processes nodes in a distributed manner guided by the linear embedding order. We examine various ways to find the first embedding, for example, via a hierarchical clustering or Hilbert curves. Then we apply four different techniques including local swaps, and minimum cuts on the boundaries of partitions, as well as contraction and dynamic programming. As our empirical study, we compare the above techniques with each other, and also to previous work in distributed graph algorithms, for example, a label-propagation method, FENNEL and Spinner. We report our results both on a private map graph and several public social networks, and show that our results beat previous distributed algorithms: For instance, compared to the label-propagation algorithm, we report an improvement of 15–25% in the cut value. We also observe that our algorithms admit scalable distributed implementation for any number of partitions. Finally, we explain three applications of this work at Google: (1) Balanced partitioning is used to route multi-term queries to different replicas in Google Search backend in a way that reduces the cache miss rates by ≈ 0.5 % , which leads to a double-digit gain in throughput of production clusters. (2) Applied to the Google Maps Driving Directions, balanced partitioning minimizes the number of cross-shard queries with the goal of saving in CPU usage. This system achieves load balancing by dividing the world graph into several “shards”. Live experiments demonstrate an ≈ 40 % drop in the number of cross-shard queries when compared to a standard geography-based method. (3) In a job scheduling problem for our data centers, we use balanced partitioning to evenly distribute the work while minimizing the amount of communication across geographically distant servers. In fact, the hierarchical nature of our solution goes well with the layering of data center servers, where certain machines are closer to each other and have faster links to one another." @default.
- W2966909581 created "2019-08-22" @default.
- W2966909581 creator A5058678204 @default.
- W2966909581 creator A5075598023 @default.
- W2966909581 creator A5076091318 @default.
- W2966909581 date "2019-08-10" @default.
- W2966909581 modified "2023-09-25" @default.
- W2966909581 title "Distributed Balanced Partitioning via Linear Embedding †" @default.
- W2966909581 cites W131283763 @default.
- W2966909581 cites W1482680420 @default.
- W2966909581 cites W1971630691 @default.
- W2966909581 cites W2001020288 @default.
- W2966909581 cites W2006023152 @default.
- W2966909581 cites W2007525305 @default.
- W2966909581 cites W2022490362 @default.
- W2966909581 cites W2029852131 @default.
- W2966909581 cites W2053061798 @default.
- W2966909581 cites W2070232376 @default.
- W2966909581 cites W2078439445 @default.
- W2966909581 cites W2080956162 @default.
- W2966909581 cites W2082773934 @default.
- W2966909581 cites W2086565575 @default.
- W2966909581 cites W2101196063 @default.
- W2966909581 cites W2108399535 @default.
- W2966909581 cites W2129027842 @default.
- W2966909581 cites W2153374077 @default.
- W2966909581 cites W2159772324 @default.
- W2966909581 cites W2167927436 @default.
- W2966909581 cites W2259576664 @default.
- W2966909581 cites W2288539294 @default.
- W2966909581 cites W2563604890 @default.
- W2966909581 cites W2620315948 @default.
- W2966909581 cites W2923926697 @default.
- W2966909581 cites W2964337893 @default.
- W2966909581 cites W3004468478 @default.
- W2966909581 cites W4251624562 @default.
- W2966909581 cites W657671047 @default.
- W2966909581 doi "https://doi.org/10.3390/a12080162" @default.
- W2966909581 hasPublicationYear "2019" @default.
- W2966909581 type Work @default.
- W2966909581 sameAs 2966909581 @default.
- W2966909581 citedByCount "14" @default.
- W2966909581 countsByYear W29669095812019 @default.
- W2966909581 countsByYear W29669095812020 @default.
- W2966909581 countsByYear W29669095812021 @default.
- W2966909581 countsByYear W29669095812022 @default.
- W2966909581 countsByYear W29669095812023 @default.
- W2966909581 crossrefType "journal-article" @default.
- W2966909581 hasAuthorship W2966909581A5058678204 @default.
- W2966909581 hasAuthorship W2966909581A5075598023 @default.
- W2966909581 hasAuthorship W2966909581A5076091318 @default.
- W2966909581 hasBestOaLocation W29669095811 @default.
- W2966909581 hasConcept C11413529 @default.
- W2966909581 hasConcept C114614502 @default.
- W2966909581 hasConcept C132525143 @default.
- W2966909581 hasConcept C154945302 @default.
- W2966909581 hasConcept C22047676 @default.
- W2966909581 hasConcept C33923547 @default.
- W2966909581 hasConcept C41008148 @default.
- W2966909581 hasConcept C41608201 @default.
- W2966909581 hasConcept C42812 @default.
- W2966909581 hasConcept C45374587 @default.
- W2966909581 hasConcept C48903430 @default.
- W2966909581 hasConcept C73555534 @default.
- W2966909581 hasConcept C75564084 @default.
- W2966909581 hasConcept C80444323 @default.
- W2966909581 hasConceptScore W2966909581C11413529 @default.
- W2966909581 hasConceptScore W2966909581C114614502 @default.
- W2966909581 hasConceptScore W2966909581C132525143 @default.
- W2966909581 hasConceptScore W2966909581C154945302 @default.
- W2966909581 hasConceptScore W2966909581C22047676 @default.
- W2966909581 hasConceptScore W2966909581C33923547 @default.
- W2966909581 hasConceptScore W2966909581C41008148 @default.
- W2966909581 hasConceptScore W2966909581C41608201 @default.
- W2966909581 hasConceptScore W2966909581C42812 @default.
- W2966909581 hasConceptScore W2966909581C45374587 @default.
- W2966909581 hasConceptScore W2966909581C48903430 @default.
- W2966909581 hasConceptScore W2966909581C73555534 @default.
- W2966909581 hasConceptScore W2966909581C75564084 @default.
- W2966909581 hasConceptScore W2966909581C80444323 @default.
- W2966909581 hasIssue "8" @default.
- W2966909581 hasLocation W29669095811 @default.
- W2966909581 hasLocation W29669095812 @default.
- W2966909581 hasOpenAccess W2966909581 @default.
- W2966909581 hasPrimaryLocation W29669095811 @default.
- W2966909581 hasRelatedWork W2893186803 @default.
- W2966909581 hasRelatedWork W2923818335 @default.
- W2966909581 hasRelatedWork W3035116611 @default.
- W2966909581 hasRelatedWork W3044354590 @default.
- W2966909581 hasRelatedWork W3094605108 @default.
- W2966909581 hasRelatedWork W4212923699 @default.
- W2966909581 hasRelatedWork W4226361842 @default.
- W2966909581 hasRelatedWork W4229041797 @default.
- W2966909581 hasRelatedWork W4287763734 @default.
- W2966909581 hasRelatedWork W4310879833 @default.
- W2966909581 hasVolume "12" @default.
- W2966909581 isParatext "false" @default.
- W2966909581 isRetracted "false" @default.