Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966968590> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2966968590 endingPage "2266" @default.
- W2966968590 startingPage "2251" @default.
- W2966968590 abstract "This paper studies a deep learning (DL) framework to solve distributed non-convex constrained optimizations in wireless networks where multiple computing nodes, interconnected via backhaul links, desire to determine an efficient assignment of their states based on local observations. Two different configurations are considered: First, an infinite-capacity backhaul enables nodes to communicate in a lossless way, thereby obtaining the solution by centralized computations. Second, a practical finite-capacity backhaul leads to the deployment of distributed solvers equipped along with quantizers for communication through capacity-limited backhaul. The distributed nature and the non-convexity of the optimizations render the identification of the solution unwieldy. To handle them, deep neural networks (DNNs) are introduced to approximate an unknown computation for the solution accurately. In consequence, the original problems are transformed to training tasks of the DNNs subject to non-convex constraints where existing DL libraries fail to extend straightforwardly. A constrained training strategy is developed based on the primal-dual method. For distributed implementation, a novel binarization technique at the output layer is developed for quantization at each node. Our proposed distributed DL framework is examined in various network configurations of wireless resource management. Numerical results verify the effectiveness of our proposed approach over existing optimization techniques." @default.
- W2966968590 created "2019-08-22" @default.
- W2966968590 creator A5030858163 @default.
- W2966968590 creator A5033315289 @default.
- W2966968590 creator A5090060830 @default.
- W2966968590 date "2019-10-01" @default.
- W2966968590 modified "2023-09-26" @default.
- W2966968590 title "Deep Learning for Distributed Optimization: Applications to Wireless Resource Management" @default.
- W2966968590 cites W2042738017 @default.
- W2966968590 cites W2048093285 @default.
- W2966968590 cites W2096092982 @default.
- W2966968590 cites W2098257210 @default.
- W2966968590 cites W2124982716 @default.
- W2966968590 cites W2137813581 @default.
- W2966968590 cites W2137983211 @default.
- W2966968590 cites W2161272050 @default.
- W2966968590 cites W2210084516 @default.
- W2966968590 cites W2508393166 @default.
- W2966968590 cites W2597120500 @default.
- W2966968590 cites W2616867685 @default.
- W2966968590 cites W2734408173 @default.
- W2966968590 cites W2736068844 @default.
- W2966968590 cites W2789734068 @default.
- W2966968590 cites W2797462110 @default.
- W2966968590 cites W2810236238 @default.
- W2966968590 cites W2811302145 @default.
- W2966968590 cites W2859887037 @default.
- W2966968590 cites W2883104796 @default.
- W2966968590 cites W2885238370 @default.
- W2966968590 cites W2894241318 @default.
- W2966968590 cites W2905030038 @default.
- W2966968590 cites W2919115771 @default.
- W2966968590 cites W2962063893 @default.
- W2966968590 cites W2974170798 @default.
- W2966968590 cites W3100343705 @default.
- W2966968590 cites W4250530426 @default.
- W2966968590 cites W4250589301 @default.
- W2966968590 cites W4292363360 @default.
- W2966968590 cites W1970830346 @default.
- W2966968590 doi "https://doi.org/10.1109/jsac.2019.2933890" @default.
- W2966968590 hasPublicationYear "2019" @default.
- W2966968590 type Work @default.
- W2966968590 sameAs 2966968590 @default.
- W2966968590 citedByCount "81" @default.
- W2966968590 countsByYear W29669685902019 @default.
- W2966968590 countsByYear W29669685902020 @default.
- W2966968590 countsByYear W29669685902021 @default.
- W2966968590 countsByYear W29669685902022 @default.
- W2966968590 countsByYear W29669685902023 @default.
- W2966968590 crossrefType "journal-article" @default.
- W2966968590 hasAuthorship W2966968590A5030858163 @default.
- W2966968590 hasAuthorship W2966968590A5033315289 @default.
- W2966968590 hasAuthorship W2966968590A5090060830 @default.
- W2966968590 hasBestOaLocation W29669685902 @default.
- W2966968590 hasConcept C108037233 @default.
- W2966968590 hasConcept C120314980 @default.
- W2966968590 hasConcept C2780609101 @default.
- W2966968590 hasConcept C31258907 @default.
- W2966968590 hasConcept C41008148 @default.
- W2966968590 hasConcept C49774154 @default.
- W2966968590 hasConcept C555944384 @default.
- W2966968590 hasConcept C76155785 @default.
- W2966968590 hasConceptScore W2966968590C108037233 @default.
- W2966968590 hasConceptScore W2966968590C120314980 @default.
- W2966968590 hasConceptScore W2966968590C2780609101 @default.
- W2966968590 hasConceptScore W2966968590C31258907 @default.
- W2966968590 hasConceptScore W2966968590C41008148 @default.
- W2966968590 hasConceptScore W2966968590C49774154 @default.
- W2966968590 hasConceptScore W2966968590C555944384 @default.
- W2966968590 hasConceptScore W2966968590C76155785 @default.
- W2966968590 hasIssue "10" @default.
- W2966968590 hasLocation W29669685901 @default.
- W2966968590 hasLocation W29669685902 @default.
- W2966968590 hasOpenAccess W2966968590 @default.
- W2966968590 hasPrimaryLocation W29669685901 @default.
- W2966968590 hasRelatedWork W1485627940 @default.
- W2966968590 hasRelatedWork W1568263432 @default.
- W2966968590 hasRelatedWork W1938339660 @default.
- W2966968590 hasRelatedWork W2152433827 @default.
- W2966968590 hasRelatedWork W2273700750 @default.
- W2966968590 hasRelatedWork W2512844215 @default.
- W2966968590 hasRelatedWork W2601964555 @default.
- W2966968590 hasRelatedWork W2607247987 @default.
- W2966968590 hasRelatedWork W4234410389 @default.
- W2966968590 hasRelatedWork W4254304356 @default.
- W2966968590 hasVolume "37" @default.
- W2966968590 isParatext "false" @default.
- W2966968590 isRetracted "false" @default.
- W2966968590 magId "2966968590" @default.
- W2966968590 workType "article" @default.