Matches in SemOpenAlex for { <https://semopenalex.org/work/W2966989968> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2966989968 endingPage "122643" @default.
- W2966989968 startingPage "122634" @default.
- W2966989968 abstract "Retinal vascular segmentation is very important for diagnosing fundus diseases. However, the existing methods of retinal vascular segmentation have some problems, such as low microvascular segmentation and wrong segmentation of pathological information. To solve these problems, we developed a fundus retinal vessels segmentation based on the improved deep learning U-Net model. First, enhance the retinal images. Second, add the residual module in the process of designing the network structure, which solved the problem of the traditional deep learning U-Net model is not deep enough. By using the improved deep learning U-Net model, it can connect the output of the convolutional layer with the output of the deconvolution layer to avoid low-level information sharing, and solved the problem of performance degradation of deep convolutional neural networks in residual networks under extreme depth conditions. By verifying on the DRIVE (digital retinal images for vessel extraction) dataset, the segmentation accuracy, sensitivity, and specificity of the proposed method are 96.50%, 93.1%, and 98.63% respectively." @default.
- W2966989968 created "2019-08-22" @default.
- W2966989968 creator A5025963168 @default.
- W2966989968 creator A5032029740 @default.
- W2966989968 creator A5060364014 @default.
- W2966989968 creator A5091022894 @default.
- W2966989968 date "2019-01-01" @default.
- W2966989968 modified "2023-10-17" @default.
- W2966989968 title "A Fundus Retinal Vessels Segmentation Scheme Based on the Improved Deep Learning U-Net Model" @default.
- W2966989968 cites W1903029394 @default.
- W2966989968 cites W2100072940 @default.
- W2966989968 cites W2105685332 @default.
- W2966989968 cites W2115680416 @default.
- W2966989968 cites W2131223615 @default.
- W2966989968 cites W2148284840 @default.
- W2966989968 cites W2148466289 @default.
- W2966989968 cites W2150769593 @default.
- W2966989968 cites W2166524747 @default.
- W2966989968 cites W2433259561 @default.
- W2966989968 cites W2463610651 @default.
- W2966989968 cites W2728997353 @default.
- W2966989968 cites W2792951596 @default.
- W2966989968 doi "https://doi.org/10.1109/access.2019.2935138" @default.
- W2966989968 hasPublicationYear "2019" @default.
- W2966989968 type Work @default.
- W2966989968 sameAs 2966989968 @default.
- W2966989968 citedByCount "51" @default.
- W2966989968 countsByYear W29669899682019 @default.
- W2966989968 countsByYear W29669899682020 @default.
- W2966989968 countsByYear W29669899682021 @default.
- W2966989968 countsByYear W29669899682022 @default.
- W2966989968 countsByYear W29669899682023 @default.
- W2966989968 crossrefType "journal-article" @default.
- W2966989968 hasAuthorship W2966989968A5025963168 @default.
- W2966989968 hasAuthorship W2966989968A5032029740 @default.
- W2966989968 hasAuthorship W2966989968A5060364014 @default.
- W2966989968 hasAuthorship W2966989968A5091022894 @default.
- W2966989968 hasBestOaLocation W29669899681 @default.
- W2966989968 hasConcept C108583219 @default.
- W2966989968 hasConcept C118487528 @default.
- W2966989968 hasConcept C124504099 @default.
- W2966989968 hasConcept C134306372 @default.
- W2966989968 hasConcept C154945302 @default.
- W2966989968 hasConcept C2776391266 @default.
- W2966989968 hasConcept C2780827179 @default.
- W2966989968 hasConcept C31972630 @default.
- W2966989968 hasConcept C33923547 @default.
- W2966989968 hasConcept C41008148 @default.
- W2966989968 hasConcept C71924100 @default.
- W2966989968 hasConcept C77618280 @default.
- W2966989968 hasConcept C89600930 @default.
- W2966989968 hasConceptScore W2966989968C108583219 @default.
- W2966989968 hasConceptScore W2966989968C118487528 @default.
- W2966989968 hasConceptScore W2966989968C124504099 @default.
- W2966989968 hasConceptScore W2966989968C134306372 @default.
- W2966989968 hasConceptScore W2966989968C154945302 @default.
- W2966989968 hasConceptScore W2966989968C2776391266 @default.
- W2966989968 hasConceptScore W2966989968C2780827179 @default.
- W2966989968 hasConceptScore W2966989968C31972630 @default.
- W2966989968 hasConceptScore W2966989968C33923547 @default.
- W2966989968 hasConceptScore W2966989968C41008148 @default.
- W2966989968 hasConceptScore W2966989968C71924100 @default.
- W2966989968 hasConceptScore W2966989968C77618280 @default.
- W2966989968 hasConceptScore W2966989968C89600930 @default.
- W2966989968 hasLocation W29669899681 @default.
- W2966989968 hasOpenAccess W2966989968 @default.
- W2966989968 hasPrimaryLocation W29669899681 @default.
- W2966989968 hasRelatedWork W1669643531 @default.
- W2966989968 hasRelatedWork W1700740617 @default.
- W2966989968 hasRelatedWork W1721780360 @default.
- W2966989968 hasRelatedWork W2110230079 @default.
- W2966989968 hasRelatedWork W2117664411 @default.
- W2966989968 hasRelatedWork W2117933325 @default.
- W2966989968 hasRelatedWork W2122581818 @default.
- W2966989968 hasRelatedWork W2159066190 @default.
- W2966989968 hasRelatedWork W2739874619 @default.
- W2966989968 hasRelatedWork W2948658236 @default.
- W2966989968 hasVolume "7" @default.
- W2966989968 isParatext "false" @default.
- W2966989968 isRetracted "false" @default.
- W2966989968 magId "2966989968" @default.
- W2966989968 workType "article" @default.