Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967012914> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2967012914 abstract "A recommender system provides users with personalized suggestions for items based onthe user’s behaviour history. These systems often use the collaborative filtering (CF) for analysing the users’ preferences for items in the rating matrix. The rating matrix typically contains a high percentage of unknown rating scores which is called the data sparsity problem. The data sparsity problem has been solved by several approaches such as Bayesian probabilistic, machine learning, genetic algorithm, particle swarm optimization and matrix factorization. The matrix factorization approach through temporal approaches has the accurate performance in addressing the data sparsity problem but still with low accuracy. The existing temporal-based factorization approaches used the long-term preferences and the short-term preferences. The difference between long-term preferences is that it utilizes the whole recorded preferences while the short-term preferences utilizes the recorded preferences within a session (e.g. week, month, season, etc.). However, there are four issues when a factorization approach is adopted which are latent feedback learning, score overfitting, user’s interest drifting and item’s popularity decay over time. This study proposes three approaches which are (i) the Ensemble Divide and Conquer (EDC) which achieved accurate latent feedback learning, (ii) two personalized matrixfactorization (MF) based temporal approaches, namely the LongTemporalMF andShortTemporalMF to solve overfitting during the optimization process, user’s interest drifting and item’s popularity decays over time and (iii) TemporalMF++ approach which solved all the issues. The TemporalMF++ approach relies on the k-means algorithm and the bacterial foraging optimization algorithm. The Root Mean Squared Error metric is used to evaluate the prediction accuracy. The factorization approaches such as the Singular Value Decomposition, Baseline, Matrix Factorization and Neighbours based Baseline are used to be compared against the proposed approaches. In addition, the Temporal Dynamics, Short-Term based Latent, Short-Term based Baseline, Long-Term, and Temporal Interaction approaches are usedto benchmark the proposed approaches.The MovieLens, Epinions, and Netflix Prize are real-world datasets which are used inthe experimental settings. The experimental results show the TemporalMF++ approachis higher prediction accuracy compared to the approaches of EDC, LongTemporalMF, and ShortTemporalMF. In addition, the TemporalMF++ approach has a predictionaccuracy higher than the benchmark approaches of factorization and temporal. Insummary, the TemporalMF++ approach has a superior effectiveness in improving the accuracy prediction of the CF by learning the temporal behaviour." @default.
- W2967012914 created "2019-08-22" @default.
- W2967012914 creator A5006554446 @default.
- W2967012914 date "2016-11-01" @default.
- W2967012914 modified "2023-09-27" @default.
- W2967012914 title "Temporal integration based factorization to improve prediction accuracy of collaborative filtering" @default.
- W2967012914 hasPublicationYear "2016" @default.
- W2967012914 type Work @default.
- W2967012914 sameAs 2967012914 @default.
- W2967012914 citedByCount "0" @default.
- W2967012914 crossrefType "dissertation" @default.
- W2967012914 hasAuthorship W2967012914A5006554446 @default.
- W2967012914 hasConcept C119857082 @default.
- W2967012914 hasConcept C121332964 @default.
- W2967012914 hasConcept C124101348 @default.
- W2967012914 hasConcept C154945302 @default.
- W2967012914 hasConcept C15744967 @default.
- W2967012914 hasConcept C158693339 @default.
- W2967012914 hasConcept C21569690 @default.
- W2967012914 hasConcept C22019652 @default.
- W2967012914 hasConcept C2778049539 @default.
- W2967012914 hasConcept C2780586970 @default.
- W2967012914 hasConcept C41008148 @default.
- W2967012914 hasConcept C42355184 @default.
- W2967012914 hasConcept C50644808 @default.
- W2967012914 hasConcept C557471498 @default.
- W2967012914 hasConcept C61797465 @default.
- W2967012914 hasConcept C62520636 @default.
- W2967012914 hasConcept C77805123 @default.
- W2967012914 hasConceptScore W2967012914C119857082 @default.
- W2967012914 hasConceptScore W2967012914C121332964 @default.
- W2967012914 hasConceptScore W2967012914C124101348 @default.
- W2967012914 hasConceptScore W2967012914C154945302 @default.
- W2967012914 hasConceptScore W2967012914C15744967 @default.
- W2967012914 hasConceptScore W2967012914C158693339 @default.
- W2967012914 hasConceptScore W2967012914C21569690 @default.
- W2967012914 hasConceptScore W2967012914C22019652 @default.
- W2967012914 hasConceptScore W2967012914C2778049539 @default.
- W2967012914 hasConceptScore W2967012914C2780586970 @default.
- W2967012914 hasConceptScore W2967012914C41008148 @default.
- W2967012914 hasConceptScore W2967012914C42355184 @default.
- W2967012914 hasConceptScore W2967012914C50644808 @default.
- W2967012914 hasConceptScore W2967012914C557471498 @default.
- W2967012914 hasConceptScore W2967012914C61797465 @default.
- W2967012914 hasConceptScore W2967012914C62520636 @default.
- W2967012914 hasConceptScore W2967012914C77805123 @default.
- W2967012914 hasLocation W29670129141 @default.
- W2967012914 hasOpenAccess W2967012914 @default.
- W2967012914 hasPrimaryLocation W29670129141 @default.
- W2967012914 hasRelatedWork W195720581 @default.
- W2967012914 hasRelatedWork W1971460272 @default.
- W2967012914 hasRelatedWork W1974318090 @default.
- W2967012914 hasRelatedWork W2018049374 @default.
- W2967012914 hasRelatedWork W2070205034 @default.
- W2967012914 hasRelatedWork W2089042306 @default.
- W2967012914 hasRelatedWork W2465829761 @default.
- W2967012914 hasRelatedWork W2513818136 @default.
- W2967012914 hasRelatedWork W2547424360 @default.
- W2967012914 hasRelatedWork W2592438485 @default.
- W2967012914 hasRelatedWork W2597997481 @default.
- W2967012914 hasRelatedWork W2604639157 @default.
- W2967012914 hasRelatedWork W2714209267 @default.
- W2967012914 hasRelatedWork W2908770365 @default.
- W2967012914 hasRelatedWork W2955819736 @default.
- W2967012914 hasRelatedWork W2963172965 @default.
- W2967012914 hasRelatedWork W2989784946 @default.
- W2967012914 hasRelatedWork W3013181209 @default.
- W2967012914 hasRelatedWork W3040859699 @default.
- W2967012914 hasRelatedWork W3152542051 @default.
- W2967012914 isParatext "false" @default.
- W2967012914 isRetracted "false" @default.
- W2967012914 magId "2967012914" @default.
- W2967012914 workType "dissertation" @default.