Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967013971> ?p ?o ?g. }
- W2967013971 endingPage "467" @default.
- W2967013971 startingPage "447" @default.
- W2967013971 abstract "Computer experiments are becoming increasingly important in scientific investigations. In the presence of uncertainty, analysts employ probabilistic sensitivity methods to identify the key-drivers of change in the quantities of interest. Simulation complexity, large dimensionality and long running times may force analysts to make statistical inference at small sample sizes. Methods designed to estimate probabilistic sensitivity measures at relatively low computational costs are attracting increasing interest. We first, propose new estimators based on a one-sample design and building on the idea of placing piecewise constant Bayesian priors on the conditional distributions of the output given each input, after partitioning the input space. We then present two alternatives, based on Bayesian non-parametric density estimation, which bypass the need for predefined partitions. Quantification of uncertainty in the estimation process through is possible without requiring additional simulator evaluations via Bootstrap in the simplest proposal, or from the posterior distribution over the sensitivity measures, when the entire inferential procedure is Bayesian. The performance of the proposed methods is compared to that of traditional point estimators in a series of numerical experiments comprising synthetic but challenging simulators, as well as a realistic application." @default.
- W2967013971 created "2019-08-22" @default.
- W2967013971 creator A5004727489 @default.
- W2967013971 creator A5072984243 @default.
- W2967013971 creator A5084219004 @default.
- W2967013971 date "2019-08-08" @default.
- W2967013971 modified "2023-09-23" @default.
- W2967013971 title "Nonparametric estimation of probabilistic sensitivity measures" @default.
- W2967013971 cites W113733777 @default.
- W2967013971 cites W1482954856 @default.
- W2967013971 cites W1492644588 @default.
- W2967013971 cites W1528242606 @default.
- W2967013971 cites W1866672412 @default.
- W2967013971 cites W1913227953 @default.
- W2967013971 cites W1938308181 @default.
- W2967013971 cites W1963591457 @default.
- W2967013971 cites W1975427826 @default.
- W2967013971 cites W1979362125 @default.
- W2967013971 cites W1981618598 @default.
- W2967013971 cites W1984550626 @default.
- W2967013971 cites W1994080277 @default.
- W2967013971 cites W1996475268 @default.
- W2967013971 cites W1998634089 @default.
- W2967013971 cites W1998998358 @default.
- W2967013971 cites W2000650629 @default.
- W2967013971 cites W2005999347 @default.
- W2967013971 cites W2006111398 @default.
- W2967013971 cites W2006857864 @default.
- W2967013971 cites W2008870058 @default.
- W2967013971 cites W2016133956 @default.
- W2967013971 cites W2018044188 @default.
- W2967013971 cites W2018582985 @default.
- W2967013971 cites W2025175130 @default.
- W2967013971 cites W2026645785 @default.
- W2967013971 cites W2029767409 @default.
- W2967013971 cites W2048092465 @default.
- W2967013971 cites W2055991639 @default.
- W2967013971 cites W2058617006 @default.
- W2967013971 cites W2060003311 @default.
- W2967013971 cites W2060288072 @default.
- W2967013971 cites W2063847981 @default.
- W2967013971 cites W2065392216 @default.
- W2967013971 cites W2065775831 @default.
- W2967013971 cites W2069429561 @default.
- W2967013971 cites W2070047497 @default.
- W2967013971 cites W2070132454 @default.
- W2967013971 cites W2072169887 @default.
- W2967013971 cites W2087309226 @default.
- W2967013971 cites W2089484716 @default.
- W2967013971 cites W2091797506 @default.
- W2967013971 cites W2092047866 @default.
- W2967013971 cites W2095396557 @default.
- W2967013971 cites W2097441841 @default.
- W2967013971 cites W2101998432 @default.
- W2967013971 cites W2102129645 @default.
- W2967013971 cites W2111046434 @default.
- W2967013971 cites W2111583736 @default.
- W2967013971 cites W2113117406 @default.
- W2967013971 cites W2118088606 @default.
- W2967013971 cites W2118942461 @default.
- W2967013971 cites W2134913163 @default.
- W2967013971 cites W2138689104 @default.
- W2967013971 cites W2146915717 @default.
- W2967013971 cites W2154098388 @default.
- W2967013971 cites W2158266063 @default.
- W2967013971 cites W2171993497 @default.
- W2967013971 cites W2256092222 @default.
- W2967013971 cites W2409416259 @default.
- W2967013971 cites W2507404680 @default.
- W2967013971 cites W2516680087 @default.
- W2967013971 cites W2586579758 @default.
- W2967013971 cites W2736618479 @default.
- W2967013971 cites W2773948589 @default.
- W2967013971 cites W2902513987 @default.
- W2967013971 cites W2963045461 @default.
- W2967013971 cites W2963712180 @default.
- W2967013971 cites W2964075504 @default.
- W2967013971 cites W2964076844 @default.
- W2967013971 cites W3101215367 @default.
- W2967013971 cites W320878294 @default.
- W2967013971 cites W4210942973 @default.
- W2967013971 cites W4233005870 @default.
- W2967013971 cites W4237236652 @default.
- W2967013971 cites W4241621308 @default.
- W2967013971 cites W4249753629 @default.
- W2967013971 cites W4254414362 @default.
- W2967013971 doi "https://doi.org/10.1007/s11222-019-09887-9" @default.
- W2967013971 hasPublicationYear "2019" @default.
- W2967013971 type Work @default.
- W2967013971 sameAs 2967013971 @default.
- W2967013971 citedByCount "5" @default.
- W2967013971 countsByYear W29670139712021 @default.
- W2967013971 countsByYear W29670139712022 @default.
- W2967013971 crossrefType "journal-article" @default.
- W2967013971 hasAuthorship W2967013971A5004727489 @default.
- W2967013971 hasAuthorship W2967013971A5072984243 @default.
- W2967013971 hasAuthorship W2967013971A5084219004 @default.
- W2967013971 hasBestOaLocation W29670139712 @default.