Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967029396> ?p ?o ?g. }
- W2967029396 endingPage "2630" @default.
- W2967029396 startingPage "2630" @default.
- W2967029396 abstract "TiO2 is regarded as a prospective electrode material owing to its excellent electrochemical properties such as the excellent cycling stability and the high safety. However, its low capacity and low electronic conductivity greatly restrict the further improvement in electrochemical performance. A new strategy was put forward to solve the above defects involved in TiO2 in which the low capacity was enhanced by nanomerization and porosity of TiO2, and the low electronic conductivity was improved by introducing Ag with a high conductivity. One-dimensional mesoporous Ag nanoparticles-embedded TiO2 nanofibers (Ag@TiO2 nanofibers) were successfully synthesized via a one-step electrospinning process combined with subsequent annealing treatment in this study. The microstructure and morphology of mesoporous TiO2@Ag nanofibers were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption. TiO2 nanofibers mainly consisted of a large amount of anatase TiO2, accompanied with traces of rutile TiO2. Ag nanoparticles were uniformly distributed throughout TiO2 nanofibers and promoted the transformation of TiO2 from the anatase to the rutile. The corresponding electrochemical performances are measured by galvanostatic charge-discharge, cycle stability, rate performance, cycle voltammetry, and electrochemical impedance spectroscopy measurements in this research, with pristine TiO2 nanofibers as the reference. The results indicated that the introduction of Ag nanoparticles into TiO2 nanofibers significantly improved the diffusion coefficient of Li ions (5.42 × 10−9 cm2⋅s−1 for pristine TiO2, 1.96 × 10−8 cm2⋅s−1 for Ag@TiO2), and the electronic conductivity of TiO2 (1.69 × 10−5 S⋅cm−1 for pristine TiO2, and 1.99 × 10−5 S⋅cm−1 for Ag@TiO2), based on which the comprehensive electrochemical performance were greatly enhanced. The coulombic efficiency of the Ag@TiO2 nanofibers electrode at the first three cycles was about 56%, 93%, and 96%, which was higher than that without Ag (48%, 66%, and 79%). The Ag@TiO2 nanofibers electrode exhibited a higher specific discharge capacity of about 128.23 mAh⋅g−1 when compared with that without Ag (72.76 mAh·g−1) after 100 cycles at 100 mA·g−1. With the current density sharply increased from 40 mA·g−1 to 1000 mA·g−1, the higher average discharge capacity of 56.35 mAh·g−1 was remained in the electrode with Ag, when compared with the electrode without Ag (average discharge capacity of about 12.14 mAh·g−1). When the current density was returned to 40 mA·g−1, 80.36% of the initial value was returned (about 162.25 mAh·g−1) in the electrode with Ag, which was evidently superior to that without Ag (about 86.50 mAh·g−1, only 55.42% of the initial value). One-dimensional mesoporous Ag@TiO2 nanofibers can be regarded as a potential and promising candidate as anode materials for lithium ion batteries." @default.
- W2967029396 created "2019-08-22" @default.
- W2967029396 creator A5027081164 @default.
- W2967029396 creator A5027835055 @default.
- W2967029396 creator A5043634114 @default.
- W2967029396 creator A5059451847 @default.
- W2967029396 date "2019-08-18" @default.
- W2967029396 modified "2023-10-08" @default.
- W2967029396 title "Synthesis of One-Dimensional Mesoporous Ag Nanoparticles-Modified TiO2 Nanofibers by Electrospinning for Lithium Ion Batteries" @default.
- W2967029396 cites W1011621165 @default.
- W2967029396 cites W1769622463 @default.
- W2967029396 cites W1969795902 @default.
- W2967029396 cites W1971088597 @default.
- W2967029396 cites W1978197893 @default.
- W2967029396 cites W1982347204 @default.
- W2967029396 cites W1991998495 @default.
- W2967029396 cites W1995563742 @default.
- W2967029396 cites W2010233317 @default.
- W2967029396 cites W2016271532 @default.
- W2967029396 cites W2017134969 @default.
- W2967029396 cites W2039897603 @default.
- W2967029396 cites W2050041941 @default.
- W2967029396 cites W2055901443 @default.
- W2967029396 cites W2056131181 @default.
- W2967029396 cites W2061796229 @default.
- W2967029396 cites W2062904146 @default.
- W2967029396 cites W2064128593 @default.
- W2967029396 cites W2065077785 @default.
- W2967029396 cites W2065552455 @default.
- W2967029396 cites W2091484350 @default.
- W2967029396 cites W2092181575 @default.
- W2967029396 cites W2100157561 @default.
- W2967029396 cites W2118557356 @default.
- W2967029396 cites W2127562318 @default.
- W2967029396 cites W2133833798 @default.
- W2967029396 cites W2139985067 @default.
- W2967029396 cites W2142656031 @default.
- W2967029396 cites W2145660657 @default.
- W2967029396 cites W2149611992 @default.
- W2967029396 cites W2155834250 @default.
- W2967029396 cites W2260127753 @default.
- W2967029396 cites W2279950888 @default.
- W2967029396 cites W2285772657 @default.
- W2967029396 cites W2324576880 @default.
- W2967029396 cites W2324760340 @default.
- W2967029396 cites W2325754514 @default.
- W2967029396 cites W2550988503 @default.
- W2967029396 cites W2611705816 @default.
- W2967029396 cites W2625766383 @default.
- W2967029396 cites W2736131210 @default.
- W2967029396 cites W2744014462 @default.
- W2967029396 cites W2792322939 @default.
- W2967029396 cites W2807363169 @default.
- W2967029396 cites W2888015409 @default.
- W2967029396 cites W2898803656 @default.
- W2967029396 cites W2948655776 @default.
- W2967029396 cites W31985844 @default.
- W2967029396 cites W4244448719 @default.
- W2967029396 cites W4292053748 @default.
- W2967029396 doi "https://doi.org/10.3390/ma12162630" @default.
- W2967029396 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6720443" @default.
- W2967029396 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31426615" @default.
- W2967029396 hasPublicationYear "2019" @default.
- W2967029396 type Work @default.
- W2967029396 sameAs 2967029396 @default.
- W2967029396 citedByCount "12" @default.
- W2967029396 countsByYear W29670293962019 @default.
- W2967029396 countsByYear W29670293962020 @default.
- W2967029396 countsByYear W29670293962021 @default.
- W2967029396 countsByYear W29670293962023 @default.
- W2967029396 crossrefType "journal-article" @default.
- W2967029396 hasAuthorship W2967029396A5027081164 @default.
- W2967029396 hasAuthorship W2967029396A5027835055 @default.
- W2967029396 hasAuthorship W2967029396A5043634114 @default.
- W2967029396 hasAuthorship W2967029396A5059451847 @default.
- W2967029396 hasBestOaLocation W29670293961 @default.
- W2967029396 hasConcept C127413603 @default.
- W2967029396 hasConcept C144796933 @default.
- W2967029396 hasConcept C147789679 @default.
- W2967029396 hasConcept C155672457 @default.
- W2967029396 hasConcept C159985019 @default.
- W2967029396 hasConcept C161790260 @default.
- W2967029396 hasConcept C171250308 @default.
- W2967029396 hasConcept C17525397 @default.
- W2967029396 hasConcept C185592680 @default.
- W2967029396 hasConcept C192562407 @default.
- W2967029396 hasConcept C26771246 @default.
- W2967029396 hasConcept C2777402863 @default.
- W2967029396 hasConcept C2777869211 @default.
- W2967029396 hasConcept C42360764 @default.
- W2967029396 hasConcept C521977710 @default.
- W2967029396 hasConcept C52859227 @default.
- W2967029396 hasConcept C55493867 @default.
- W2967029396 hasConcept C65165184 @default.
- W2967029396 hasConcept C7040849 @default.
- W2967029396 hasConcept C82776694 @default.
- W2967029396 hasConcept C91129048 @default.
- W2967029396 hasConceptScore W2967029396C127413603 @default.