Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967149768> ?p ?o ?g. }
- W2967149768 endingPage "602" @default.
- W2967149768 startingPage "602" @default.
- W2967149768 abstract "With the advances in different biological networks including gene regulation, gene co-expression, protein–protein interaction networks, and advanced approaches for network reconstruction, analysis, and interpretation, it is possible to discover reliable and accurate molecular network-based biomarkers for monitoring cancer treatment. Such efforts will also pave the way toward the realization of biomarker-driven personalized medicine against cancer. Previously, we have reconstructed disease-specific driver signaling networks using multi-omics profiles and cancer signaling pathway data. In this study, we developed a network-based sparse Bayesian machine (NBSBM) approach, using previously derived disease-specific driver signaling networks to predict cancer cell responses to drugs. NBSBM made use of the information encoded in a disease-specific (differentially expressed) network to improve its prediction performance in problems with a reduced amount of training data and a very high-dimensional feature space. Sparsity in NBSBM is favored by a spike and slab prior distribution, which is combined with a Markov random field prior that encodes the network of feature dependencies. Gene features that are connected in the network are assumed to be both relevant and irrelevant to drug responses. We compared the proposed method with network-based support vector machine (NBSVM) approaches and found that the NBSBM approach could achieve much better accuracy than the other two NBSVM methods. The gene modules selected from the disease-specific driver networks for predicting drug sensitivity might be directly involved in drug sensitivity or resistance. This work provides a disease-specific network-based drug sensitivity prediction approach and can uncover the potential mechanisms of the action of drugs by selecting the most predictive sub-networks from the disease-specific network." @default.
- W2967149768 created "2019-08-22" @default.
- W2967149768 creator A5056075825 @default.
- W2967149768 creator A5080833691 @default.
- W2967149768 creator A5085028455 @default.
- W2967149768 date "2019-08-09" @default.
- W2967149768 modified "2023-10-02" @default.
- W2967149768 title "Network as a Biomarker: A Novel Network-Based Sparse Bayesian Machine for Pathway-Driven Drug Response Prediction" @default.
- W2967149768 cites W1583555936 @default.
- W2967149768 cites W1906461790 @default.
- W2967149768 cites W1990469034 @default.
- W2967149768 cites W1998831452 @default.
- W2967149768 cites W2034710584 @default.
- W2967149768 cites W2044858733 @default.
- W2967149768 cites W2052495084 @default.
- W2967149768 cites W2095898968 @default.
- W2967149768 cites W2105597591 @default.
- W2967149768 cites W2108068107 @default.
- W2967149768 cites W2110071511 @default.
- W2967149768 cites W2116063398 @default.
- W2967149768 cites W2116224763 @default.
- W2967149768 cites W2116265446 @default.
- W2967149768 cites W2116298046 @default.
- W2967149768 cites W2118344630 @default.
- W2967149768 cites W2125789330 @default.
- W2967149768 cites W2128689695 @default.
- W2967149768 cites W2146416540 @default.
- W2967149768 cites W2154947819 @default.
- W2967149768 cites W2159482845 @default.
- W2967149768 cites W2167371528 @default.
- W2967149768 cites W2896725104 @default.
- W2967149768 cites W2898321218 @default.
- W2967149768 cites W2912041567 @default.
- W2967149768 cites W4242404314 @default.
- W2967149768 cites W4294216483 @default.
- W2967149768 cites W842607788 @default.
- W2967149768 doi "https://doi.org/10.3390/genes10080602" @default.
- W2967149768 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6723660" @default.
- W2967149768 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31405013" @default.
- W2967149768 hasPublicationYear "2019" @default.
- W2967149768 type Work @default.
- W2967149768 sameAs 2967149768 @default.
- W2967149768 citedByCount "11" @default.
- W2967149768 countsByYear W29671497682020 @default.
- W2967149768 countsByYear W29671497682021 @default.
- W2967149768 countsByYear W29671497682022 @default.
- W2967149768 countsByYear W29671497682023 @default.
- W2967149768 crossrefType "journal-article" @default.
- W2967149768 hasAuthorship W2967149768A5056075825 @default.
- W2967149768 hasAuthorship W2967149768A5080833691 @default.
- W2967149768 hasAuthorship W2967149768A5085028455 @default.
- W2967149768 hasBestOaLocation W29671497681 @default.
- W2967149768 hasConcept C104317684 @default.
- W2967149768 hasConcept C107673813 @default.
- W2967149768 hasConcept C119857082 @default.
- W2967149768 hasConcept C12267149 @default.
- W2967149768 hasConcept C127413603 @default.
- W2967149768 hasConcept C138885662 @default.
- W2967149768 hasConcept C148483581 @default.
- W2967149768 hasConcept C150194340 @default.
- W2967149768 hasConcept C154945302 @default.
- W2967149768 hasConcept C207201462 @default.
- W2967149768 hasConcept C21200559 @default.
- W2967149768 hasConcept C24326235 @default.
- W2967149768 hasConcept C2776401178 @default.
- W2967149768 hasConcept C28225019 @default.
- W2967149768 hasConcept C33724603 @default.
- W2967149768 hasConcept C41008148 @default.
- W2967149768 hasConcept C41895202 @default.
- W2967149768 hasConcept C55105296 @default.
- W2967149768 hasConcept C55493867 @default.
- W2967149768 hasConcept C67339327 @default.
- W2967149768 hasConcept C70721500 @default.
- W2967149768 hasConcept C82142266 @default.
- W2967149768 hasConcept C86803240 @default.
- W2967149768 hasConceptScore W2967149768C104317684 @default.
- W2967149768 hasConceptScore W2967149768C107673813 @default.
- W2967149768 hasConceptScore W2967149768C119857082 @default.
- W2967149768 hasConceptScore W2967149768C12267149 @default.
- W2967149768 hasConceptScore W2967149768C127413603 @default.
- W2967149768 hasConceptScore W2967149768C138885662 @default.
- W2967149768 hasConceptScore W2967149768C148483581 @default.
- W2967149768 hasConceptScore W2967149768C150194340 @default.
- W2967149768 hasConceptScore W2967149768C154945302 @default.
- W2967149768 hasConceptScore W2967149768C207201462 @default.
- W2967149768 hasConceptScore W2967149768C21200559 @default.
- W2967149768 hasConceptScore W2967149768C24326235 @default.
- W2967149768 hasConceptScore W2967149768C2776401178 @default.
- W2967149768 hasConceptScore W2967149768C28225019 @default.
- W2967149768 hasConceptScore W2967149768C33724603 @default.
- W2967149768 hasConceptScore W2967149768C41008148 @default.
- W2967149768 hasConceptScore W2967149768C41895202 @default.
- W2967149768 hasConceptScore W2967149768C55105296 @default.
- W2967149768 hasConceptScore W2967149768C55493867 @default.
- W2967149768 hasConceptScore W2967149768C67339327 @default.
- W2967149768 hasConceptScore W2967149768C70721500 @default.
- W2967149768 hasConceptScore W2967149768C82142266 @default.
- W2967149768 hasConceptScore W2967149768C86803240 @default.