Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967173855> ?p ?o ?g. }
- W2967173855 endingPage "e0220063" @default.
- W2967173855 startingPage "e0220063" @default.
- W2967173855 abstract "Purpose To benchmark the human and machine performance of spectral-domain (SD) and swept-source (SS) optical coherence tomography (OCT) image segmentation, i.e., pixel-wise classification, for the compartments vitreous, retina, choroid, sclera. Methods A convolutional neural network (CNN) was trained on OCT B-scan images annotated by a senior ground truth expert retina specialist to segment the posterior eye compartments. Independent benchmark data sets (30 SDOCT and 30 SSOCT) were manually segmented by three classes of graders with varying levels of ophthalmic proficiencies. Nine graders contributed to benchmark an additional 60 images in three consecutive runs. Inter-human and intra-human class agreement was measured and compared to the CNN results. Results The CNN training data consisted of a total of 6210 manually segmented images derived from 2070 B-scans (1046 SDOCT and 1024 SSOCT; 630 C-Scans). The CNN segmentation revealed a high agreement with all grader groups. For all compartments and groups, the mean Intersection over Union (IOU) score of CNN compartmentalization versus group graders’ compartmentalization was higher than the mean score for intra-grader group comparison. Conclusion The proposed deep learning segmentation algorithm (CNN) for automated eye compartment segmentation in OCT B-scans (SDOCT and SSOCT) is on par with manual segmentations by human graders." @default.
- W2967173855 created "2019-08-22" @default.
- W2967173855 creator A5004084769 @default.
- W2967173855 creator A5015881286 @default.
- W2967173855 creator A5016588157 @default.
- W2967173855 creator A5029283104 @default.
- W2967173855 creator A5036890769 @default.
- W2967173855 creator A5046936277 @default.
- W2967173855 creator A5056989214 @default.
- W2967173855 creator A5059328359 @default.
- W2967173855 creator A5062312419 @default.
- W2967173855 creator A5066046228 @default.
- W2967173855 creator A5066969871 @default.
- W2967173855 creator A5068290836 @default.
- W2967173855 creator A5070786820 @default.
- W2967173855 creator A5072951845 @default.
- W2967173855 creator A5081163806 @default.
- W2967173855 creator A5087458354 @default.
- W2967173855 date "2019-08-16" @default.
- W2967173855 modified "2023-10-16" @default.
- W2967173855 title "Validation of automated artificial intelligence segmentation of optical coherence tomography images" @default.
- W2967173855 cites W1745334888 @default.
- W2967173855 cites W1901129140 @default.
- W2967173855 cites W1969120204 @default.
- W2967173855 cites W2013107002 @default.
- W2967173855 cites W2038850290 @default.
- W2967173855 cites W2057842522 @default.
- W2967173855 cites W2074598933 @default.
- W2967173855 cites W2098077604 @default.
- W2967173855 cites W2117539524 @default.
- W2967173855 cites W2134542952 @default.
- W2967173855 cites W2395611524 @default.
- W2967173855 cites W2418802570 @default.
- W2967173855 cites W2462236757 @default.
- W2967173855 cites W2521058497 @default.
- W2967173855 cites W2570893893 @default.
- W2967173855 cites W2592929672 @default.
- W2967173855 cites W2606534623 @default.
- W2967173855 cites W2608854843 @default.
- W2967173855 cites W2618530766 @default.
- W2967173855 cites W2625039771 @default.
- W2967173855 cites W2767404384 @default.
- W2967173855 cites W2768217608 @default.
- W2967173855 cites W2772059204 @default.
- W2967173855 cites W2885688423 @default.
- W2967173855 cites W2886281300 @default.
- W2967173855 cites W2949122205 @default.
- W2967173855 cites W2963251008 @default.
- W2967173855 cites W2963881378 @default.
- W2967173855 doi "https://doi.org/10.1371/journal.pone.0220063" @default.
- W2967173855 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6697318" @default.
- W2967173855 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31419240" @default.
- W2967173855 hasPublicationYear "2019" @default.
- W2967173855 type Work @default.
- W2967173855 sameAs 2967173855 @default.
- W2967173855 citedByCount "44" @default.
- W2967173855 countsByYear W29671738552019 @default.
- W2967173855 countsByYear W29671738552020 @default.
- W2967173855 countsByYear W29671738552021 @default.
- W2967173855 countsByYear W29671738552022 @default.
- W2967173855 countsByYear W29671738552023 @default.
- W2967173855 crossrefType "journal-article" @default.
- W2967173855 hasAuthorship W2967173855A5004084769 @default.
- W2967173855 hasAuthorship W2967173855A5015881286 @default.
- W2967173855 hasAuthorship W2967173855A5016588157 @default.
- W2967173855 hasAuthorship W2967173855A5029283104 @default.
- W2967173855 hasAuthorship W2967173855A5036890769 @default.
- W2967173855 hasAuthorship W2967173855A5046936277 @default.
- W2967173855 hasAuthorship W2967173855A5056989214 @default.
- W2967173855 hasAuthorship W2967173855A5059328359 @default.
- W2967173855 hasAuthorship W2967173855A5062312419 @default.
- W2967173855 hasAuthorship W2967173855A5066046228 @default.
- W2967173855 hasAuthorship W2967173855A5066969871 @default.
- W2967173855 hasAuthorship W2967173855A5068290836 @default.
- W2967173855 hasAuthorship W2967173855A5070786820 @default.
- W2967173855 hasAuthorship W2967173855A5072951845 @default.
- W2967173855 hasAuthorship W2967173855A5081163806 @default.
- W2967173855 hasAuthorship W2967173855A5087458354 @default.
- W2967173855 hasBestOaLocation W29671738551 @default.
- W2967173855 hasConcept C108583219 @default.
- W2967173855 hasConcept C118487528 @default.
- W2967173855 hasConcept C12267149 @default.
- W2967173855 hasConcept C124504099 @default.
- W2967173855 hasConcept C146849305 @default.
- W2967173855 hasConcept C153180895 @default.
- W2967173855 hasConcept C154945302 @default.
- W2967173855 hasConcept C185798385 @default.
- W2967173855 hasConcept C205649164 @default.
- W2967173855 hasConcept C2777100477 @default.
- W2967173855 hasConcept C2778818243 @default.
- W2967173855 hasConcept C31972630 @default.
- W2967173855 hasConcept C41008148 @default.
- W2967173855 hasConcept C58640448 @default.
- W2967173855 hasConcept C71924100 @default.
- W2967173855 hasConcept C81363708 @default.
- W2967173855 hasConcept C89600930 @default.
- W2967173855 hasConceptScore W2967173855C108583219 @default.
- W2967173855 hasConceptScore W2967173855C118487528 @default.