Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967197919> ?p ?o ?g. }
- W2967197919 endingPage "105681" @default.
- W2967197919 startingPage "105681" @default.
- W2967197919 abstract "Prostate high-dose-rate brachytherapy (HDR-BT) planning involves determining the movement that a high-strength radiation stepping source travels through the patient’s body, such that the resulting radiation dose distribution sufficiently covers tumor volumes and safely spares nearby healthy organs from radiation risks. The Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA) has been shown to be able to effectively handle this inherent bi-objective nature of HDR-BT planning. However, in clinical practice there is a very restricted planning time budget (often less than 1 h) for HDR-BT planning, and a considerable amount of running time needs to be spent before MO-RV-GOMEA finds a good trade-off front of treatment plans (about20–30 min on a single CPU core) with sufficiently accurate dose calculations, limiting the applicability of the approach in the clinic. To address this limitation, we propose an efficiency enhancement technique for MO-RV-GOMEA solving the bi-objective prostate HDR-BT planning problem. Dose-Volume (DV) indices are often used to assess the quality of HDR-BT plans. The accuracy of these indices depends on the number of dose calculation points at which radiation doses are computed. These are randomly uniformly sampled inside target volumes and organs at risk. In available HDR-BT planning optimization algorithms, the number of dose calculation points is fixed. The more points are used, the better the accuracy of the obtained results will be, but also the longer the algorithms need to be run. In this work, we introduce a so-called multi-resolution scheme that gradually increases the number of dose calculation points during the optimization run such that the running time can be substantially reduced without compromising on the accuracy of the obtained results. Experiments on a data set of 18 patient cases show that with the multi-resolution scheme, MO-RV-GOMEA can achieve a sufficiently good trade-off front of treatment plans after five minutes of running time on a single CPU core (4–6 times faster than the old approach with a fixed number of dose calculation points). When the optimization with the multi-resolution scheme is run on a quad-core machine, five minutes are enough to obtain trade-off fronts that are nearly as good as those obtained by running optimization with the old approach in one hour (i.e., 12 times faster). This leaves ample time to perform the selection of the preferred treatment plan from the trade-off front for the specific patient at hand. Furthermore, comparisons with real clinical treatment plans, which were manually made by experienced BT planners within 30–60 min, confirm that the plans obtained by our approach are superior in terms of DV indices. These results indicate that our proposed approach has the potential to be employed in clinical practice." @default.
- W2967197919 created "2019-08-22" @default.
- W2967197919 creator A5015936442 @default.
- W2967197919 creator A5022272327 @default.
- W2967197919 creator A5025122230 @default.
- W2967197919 creator A5031539135 @default.
- W2967197919 creator A5060970719 @default.
- W2967197919 creator A5081219326 @default.
- W2967197919 date "2019-11-01" @default.
- W2967197919 modified "2023-09-27" @default.
- W2967197919 title "Fast and insightful bi-objective optimization for prostate cancer treatment planning with high-dose-rate brachytherapy" @default.
- W2967197919 cites W1971750496 @default.
- W2967197919 cites W1977422951 @default.
- W2967197919 cites W2022485595 @default.
- W2967197919 cites W2022944751 @default.
- W2967197919 cites W2029753182 @default.
- W2967197919 cites W2061715500 @default.
- W2967197919 cites W2064057265 @default.
- W2967197919 cites W2080728354 @default.
- W2967197919 cites W2081220147 @default.
- W2967197919 cites W2082466750 @default.
- W2967197919 cites W2104275987 @default.
- W2967197919 cites W2112036188 @default.
- W2967197919 cites W2123934092 @default.
- W2967197919 cites W2125758950 @default.
- W2967197919 cites W2125843529 @default.
- W2967197919 cites W2126105956 @default.
- W2967197919 cites W2143381319 @default.
- W2967197919 cites W2165626989 @default.
- W2967197919 cites W2169042387 @default.
- W2967197919 cites W2177299365 @default.
- W2967197919 cites W2773170687 @default.
- W2967197919 cites W2790436084 @default.
- W2967197919 cites W2913965995 @default.
- W2967197919 cites W2921662499 @default.
- W2967197919 cites W2953433334 @default.
- W2967197919 cites W3099709049 @default.
- W2967197919 cites W3122317558 @default.
- W2967197919 doi "https://doi.org/10.1016/j.asoc.2019.105681" @default.
- W2967197919 hasPublicationYear "2019" @default.
- W2967197919 type Work @default.
- W2967197919 sameAs 2967197919 @default.
- W2967197919 citedByCount "7" @default.
- W2967197919 countsByYear W29671979192020 @default.
- W2967197919 countsByYear W29671979192021 @default.
- W2967197919 countsByYear W29671979192022 @default.
- W2967197919 countsByYear W29671979192023 @default.
- W2967197919 crossrefType "journal-article" @default.
- W2967197919 hasAuthorship W2967197919A5015936442 @default.
- W2967197919 hasAuthorship W2967197919A5022272327 @default.
- W2967197919 hasAuthorship W2967197919A5025122230 @default.
- W2967197919 hasAuthorship W2967197919A5031539135 @default.
- W2967197919 hasAuthorship W2967197919A5060970719 @default.
- W2967197919 hasAuthorship W2967197919A5081219326 @default.
- W2967197919 hasBestOaLocation W29671979192 @default.
- W2967197919 hasConcept C121608353 @default.
- W2967197919 hasConcept C126255220 @default.
- W2967197919 hasConcept C126322002 @default.
- W2967197919 hasConcept C126838900 @default.
- W2967197919 hasConcept C19527891 @default.
- W2967197919 hasConcept C201645570 @default.
- W2967197919 hasConcept C2777416452 @default.
- W2967197919 hasConcept C2780192828 @default.
- W2967197919 hasConcept C2989005 @default.
- W2967197919 hasConcept C3017588741 @default.
- W2967197919 hasConcept C33923547 @default.
- W2967197919 hasConcept C41008148 @default.
- W2967197919 hasConcept C44154836 @default.
- W2967197919 hasConcept C509974204 @default.
- W2967197919 hasConcept C71924100 @default.
- W2967197919 hasConceptScore W2967197919C121608353 @default.
- W2967197919 hasConceptScore W2967197919C126255220 @default.
- W2967197919 hasConceptScore W2967197919C126322002 @default.
- W2967197919 hasConceptScore W2967197919C126838900 @default.
- W2967197919 hasConceptScore W2967197919C19527891 @default.
- W2967197919 hasConceptScore W2967197919C201645570 @default.
- W2967197919 hasConceptScore W2967197919C2777416452 @default.
- W2967197919 hasConceptScore W2967197919C2780192828 @default.
- W2967197919 hasConceptScore W2967197919C2989005 @default.
- W2967197919 hasConceptScore W2967197919C3017588741 @default.
- W2967197919 hasConceptScore W2967197919C33923547 @default.
- W2967197919 hasConceptScore W2967197919C41008148 @default.
- W2967197919 hasConceptScore W2967197919C44154836 @default.
- W2967197919 hasConceptScore W2967197919C509974204 @default.
- W2967197919 hasConceptScore W2967197919C71924100 @default.
- W2967197919 hasFunder F4320321396 @default.
- W2967197919 hasFunder F4320321800 @default.
- W2967197919 hasLocation W29671979191 @default.
- W2967197919 hasLocation W29671979192 @default.
- W2967197919 hasOpenAccess W2967197919 @default.
- W2967197919 hasPrimaryLocation W29671979191 @default.
- W2967197919 hasRelatedWork W143605479 @default.
- W2967197919 hasRelatedWork W2021121231 @default.
- W2967197919 hasRelatedWork W2021337688 @default.
- W2967197919 hasRelatedWork W2024202001 @default.
- W2967197919 hasRelatedWork W2070489026 @default.
- W2967197919 hasRelatedWork W2123106379 @default.
- W2967197919 hasRelatedWork W2126661361 @default.