Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967200432> ?p ?o ?g. }
- W2967200432 endingPage "120637" @default.
- W2967200432 startingPage "120626" @default.
- W2967200432 abstract "For solving the problem of limited synthetic aperture radar (SAR) labeled samples, an initial SAR target recognition algorithm based on complex Gaussian-Bayesian online dictionary learning is here presented. The amplitude and phase information of SAR images is an important discriminator for target recognition, which derives significant statistical distribution-based target recognition. First, to better fit the SAR images and to reduce the computational complexity, a complex Gaussian distribution (CGD) model in the context of dictionary learning was established to model SAR images. Second, as the discriminative dictionary can be learned in conjunction with modeling the distribution characteristics of SAR images, a discriminative dictionary of the distributed model had to be learned. Finally, to solve the problem of limited labeled samples and the time consumption of the existing algorithms, the semi-supervised online dictionary learning method was used to add the training samples to update the dictionary. The moving and stationary target acquisition and recognition (MSTAR) dataset was used to complete the experiment, and then, several comparison methods were used to ensure fairness. Experimental results revealed that the proposed algorithm was better than the compared algorithms consistently in the case of different-sized training samples. The proposed method can reach an accuracy of 94.52% when using 20% training samples which is much higher than the comparison algorithms. Moreover, the proposed method is 0.5% higher than the second-best method when using the whole training samples." @default.
- W2967200432 created "2019-08-22" @default.
- W2967200432 creator A5008050820 @default.
- W2967200432 creator A5024863630 @default.
- W2967200432 creator A5033300023 @default.
- W2967200432 creator A5043022387 @default.
- W2967200432 creator A5060985978 @default.
- W2967200432 date "2019-01-01" @default.
- W2967200432 modified "2023-10-16" @default.
- W2967200432 title "Complex Gaussian–Bayesian Online Dictionary Learning for SAR Target Recognition with Limited Labeled Samples" @default.
- W2967200432 cites W1963932623 @default.
- W2967200432 cites W1965572316 @default.
- W2967200432 cites W1972715665 @default.
- W2967200432 cites W1976967648 @default.
- W2967200432 cites W2005490094 @default.
- W2967200432 cites W2005876975 @default.
- W2967200432 cites W2010853190 @default.
- W2967200432 cites W2013203016 @default.
- W2967200432 cites W2030175355 @default.
- W2967200432 cites W2037437396 @default.
- W2967200432 cites W2038501427 @default.
- W2967200432 cites W2041478093 @default.
- W2967200432 cites W2053024573 @default.
- W2967200432 cites W2062102668 @default.
- W2967200432 cites W2083905034 @default.
- W2967200432 cites W2088843485 @default.
- W2967200432 cites W2100526560 @default.
- W2967200432 cites W2108445923 @default.
- W2967200432 cites W2111525901 @default.
- W2967200432 cites W2117111086 @default.
- W2967200432 cites W2138287042 @default.
- W2967200432 cites W2140856955 @default.
- W2967200432 cites W2142740798 @default.
- W2967200432 cites W2148791593 @default.
- W2967200432 cites W2150486153 @default.
- W2967200432 cites W2160547390 @default.
- W2967200432 cites W2163584563 @default.
- W2967200432 cites W2254969944 @default.
- W2967200432 cites W2269648248 @default.
- W2967200432 cites W2270801692 @default.
- W2967200432 cites W2292481059 @default.
- W2967200432 cites W2410591237 @default.
- W2967200432 cites W2520537062 @default.
- W2967200432 cites W2773828237 @default.
- W2967200432 cites W2795040136 @default.
- W2967200432 cites W2799991397 @default.
- W2967200432 cites W2877622527 @default.
- W2967200432 cites W4235713725 @default.
- W2967200432 doi "https://doi.org/10.1109/access.2019.2935164" @default.
- W2967200432 hasPublicationYear "2019" @default.
- W2967200432 type Work @default.
- W2967200432 sameAs 2967200432 @default.
- W2967200432 citedByCount "3" @default.
- W2967200432 countsByYear W29672004322021 @default.
- W2967200432 countsByYear W29672004322023 @default.
- W2967200432 crossrefType "journal-article" @default.
- W2967200432 hasAuthorship W2967200432A5008050820 @default.
- W2967200432 hasAuthorship W2967200432A5024863630 @default.
- W2967200432 hasAuthorship W2967200432A5033300023 @default.
- W2967200432 hasAuthorship W2967200432A5043022387 @default.
- W2967200432 hasAuthorship W2967200432A5060985978 @default.
- W2967200432 hasBestOaLocation W29672004321 @default.
- W2967200432 hasConcept C107673813 @default.
- W2967200432 hasConcept C121332964 @default.
- W2967200432 hasConcept C153180895 @default.
- W2967200432 hasConcept C154945302 @default.
- W2967200432 hasConcept C163716315 @default.
- W2967200432 hasConcept C41008148 @default.
- W2967200432 hasConcept C61326573 @default.
- W2967200432 hasConcept C62520636 @default.
- W2967200432 hasConcept C87360688 @default.
- W2967200432 hasConceptScore W2967200432C107673813 @default.
- W2967200432 hasConceptScore W2967200432C121332964 @default.
- W2967200432 hasConceptScore W2967200432C153180895 @default.
- W2967200432 hasConceptScore W2967200432C154945302 @default.
- W2967200432 hasConceptScore W2967200432C163716315 @default.
- W2967200432 hasConceptScore W2967200432C41008148 @default.
- W2967200432 hasConceptScore W2967200432C61326573 @default.
- W2967200432 hasConceptScore W2967200432C62520636 @default.
- W2967200432 hasConceptScore W2967200432C87360688 @default.
- W2967200432 hasFunder F4320321001 @default.
- W2967200432 hasFunder F4320327720 @default.
- W2967200432 hasLocation W29672004321 @default.
- W2967200432 hasOpenAccess W2967200432 @default.
- W2967200432 hasPrimaryLocation W29672004321 @default.
- W2967200432 hasRelatedWork W1964120219 @default.
- W2967200432 hasRelatedWork W1973066300 @default.
- W2967200432 hasRelatedWork W2062264607 @default.
- W2967200432 hasRelatedWork W2354538956 @default.
- W2967200432 hasRelatedWork W2367227827 @default.
- W2967200432 hasRelatedWork W2543161807 @default.
- W2967200432 hasRelatedWork W2901620918 @default.
- W2967200432 hasRelatedWork W2973417394 @default.
- W2967200432 hasRelatedWork W4293731510 @default.
- W2967200432 hasRelatedWork W2785749360 @default.
- W2967200432 hasVolume "7" @default.
- W2967200432 isParatext "false" @default.
- W2967200432 isRetracted "false" @default.