Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967209214> ?p ?o ?g. }
- W2967209214 endingPage "93" @default.
- W2967209214 startingPage "77" @default.
- W2967209214 abstract "Dimensionality reduction (DR) technology plays an important role in hyperspectral image (HSI) classification. However, many existing DR algorithms ignore the complex intrinsic structure in spatial domain and spectral domain of HSI. To address this issue, we put forward a spatial-spectral local discriminant projection (SSLDP) method based on the manifold learning theory and spatial consistency in HSI. In SSLDP, hyperspectral pixels are reconstructed by minimizing the weighted reconstruction errors to preserve the local geometric structure. Then, two weighted scatter matrices are designed to maintain the neighborhood structure in spatial domain and two reconstruction graphs are constructed to discover the local discriminant relationship in spectral domain. Finally, an objective function is designed for obtaining an optimal projection by compacting the spatial-spectral local intraclass points while separating the spatial-spectral local interclass points. The experiments performed on some real hyperspectral images, including the Indian Pines, PaviaU and Washington DC, demonstrate that the presented SSLDP algorithm is significantly superior to some state-of-the-art DR algorithms." @default.
- W2967209214 created "2019-08-22" @default.
- W2967209214 creator A5033398332 @default.
- W2967209214 creator A5057879702 @default.
- W2967209214 creator A5062984211 @default.
- W2967209214 creator A5064046752 @default.
- W2967209214 creator A5088872677 @default.
- W2967209214 date "2019-10-01" @default.
- W2967209214 modified "2023-09-27" @default.
- W2967209214 title "Spatial-spectral local discriminant projection for dimensionality reduction of hyperspectral image" @default.
- W2967209214 cites W1159025224 @default.
- W2967209214 cites W1483589200 @default.
- W2967209214 cites W1976359033 @default.
- W2967209214 cites W1979730959 @default.
- W2967209214 cites W1996213136 @default.
- W2967209214 cites W2002849025 @default.
- W2967209214 cites W2019188302 @default.
- W2967209214 cites W2045786596 @default.
- W2967209214 cites W2047029347 @default.
- W2967209214 cites W2053186076 @default.
- W2967209214 cites W2059110141 @default.
- W2967209214 cites W2072187267 @default.
- W2967209214 cites W2097308346 @default.
- W2967209214 cites W2123961273 @default.
- W2967209214 cites W2135758523 @default.
- W2967209214 cites W2143130611 @default.
- W2967209214 cites W2166923144 @default.
- W2967209214 cites W2190646811 @default.
- W2967209214 cites W2314433345 @default.
- W2967209214 cites W2344415132 @default.
- W2967209214 cites W2398606097 @default.
- W2967209214 cites W2418115551 @default.
- W2967209214 cites W2518045224 @default.
- W2967209214 cites W2527650001 @default.
- W2967209214 cites W2558098092 @default.
- W2967209214 cites W2574404198 @default.
- W2967209214 cites W2597644092 @default.
- W2967209214 cites W2738160899 @default.
- W2967209214 cites W2742141965 @default.
- W2967209214 cites W2747744463 @default.
- W2967209214 cites W2751249843 @default.
- W2967209214 cites W2789904909 @default.
- W2967209214 cites W2793357412 @default.
- W2967209214 cites W2804458818 @default.
- W2967209214 cites W2884970059 @default.
- W2967209214 cites W2886079389 @default.
- W2967209214 cites W2894165434 @default.
- W2967209214 cites W3148981562 @default.
- W2967209214 cites W4241152325 @default.
- W2967209214 doi "https://doi.org/10.1016/j.isprsjprs.2019.06.018" @default.
- W2967209214 hasPublicationYear "2019" @default.
- W2967209214 type Work @default.
- W2967209214 sameAs 2967209214 @default.
- W2967209214 citedByCount "14" @default.
- W2967209214 countsByYear W29672092142019 @default.
- W2967209214 countsByYear W29672092142020 @default.
- W2967209214 countsByYear W29672092142021 @default.
- W2967209214 countsByYear W29672092142022 @default.
- W2967209214 countsByYear W29672092142023 @default.
- W2967209214 crossrefType "journal-article" @default.
- W2967209214 hasAuthorship W2967209214A5033398332 @default.
- W2967209214 hasAuthorship W2967209214A5057879702 @default.
- W2967209214 hasAuthorship W2967209214A5062984211 @default.
- W2967209214 hasAuthorship W2967209214A5064046752 @default.
- W2967209214 hasAuthorship W2967209214A5088872677 @default.
- W2967209214 hasConcept C105795698 @default.
- W2967209214 hasConcept C11413529 @default.
- W2967209214 hasConcept C151876577 @default.
- W2967209214 hasConcept C153180895 @default.
- W2967209214 hasConcept C154945302 @default.
- W2967209214 hasConcept C159078339 @default.
- W2967209214 hasConcept C159620131 @default.
- W2967209214 hasConcept C160633673 @default.
- W2967209214 hasConcept C31972630 @default.
- W2967209214 hasConcept C33923547 @default.
- W2967209214 hasConcept C41008148 @default.
- W2967209214 hasConcept C57493831 @default.
- W2967209214 hasConcept C70518039 @default.
- W2967209214 hasConcept C78397625 @default.
- W2967209214 hasConceptScore W2967209214C105795698 @default.
- W2967209214 hasConceptScore W2967209214C11413529 @default.
- W2967209214 hasConceptScore W2967209214C151876577 @default.
- W2967209214 hasConceptScore W2967209214C153180895 @default.
- W2967209214 hasConceptScore W2967209214C154945302 @default.
- W2967209214 hasConceptScore W2967209214C159078339 @default.
- W2967209214 hasConceptScore W2967209214C159620131 @default.
- W2967209214 hasConceptScore W2967209214C160633673 @default.
- W2967209214 hasConceptScore W2967209214C31972630 @default.
- W2967209214 hasConceptScore W2967209214C33923547 @default.
- W2967209214 hasConceptScore W2967209214C41008148 @default.
- W2967209214 hasConceptScore W2967209214C57493831 @default.
- W2967209214 hasConceptScore W2967209214C70518039 @default.
- W2967209214 hasConceptScore W2967209214C78397625 @default.
- W2967209214 hasLocation W29672092141 @default.
- W2967209214 hasOpenAccess W2967209214 @default.
- W2967209214 hasPrimaryLocation W29672092141 @default.
- W2967209214 hasRelatedWork W198500362 @default.
- W2967209214 hasRelatedWork W2045634816 @default.