Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967217103> ?p ?o ?g. }
- W2967217103 endingPage "102924" @default.
- W2967217103 startingPage "102924" @default.
- W2967217103 abstract "Abstract Extraction of underlying knowledge from monitoring data is beneficial to on-site management during shield tunneling construction. However, it remains a challenge to unsupervisedly learn from these monitoring data due to the nature of high-dimensional, miscellaneous, and highly nonlinear. This study proposes a new systematic approach to classify shield machine monitoring data by integrating spectral clustering (SC) and complex network (CN) theory. In this approach, CN theory is introduced to obtain the topological relations and network structure of machine monitoring data directly. Based on the network topology, SC is employed to classify these data with unbiased similarity measurement. A river-crossing shield tunnel is used in this study to validate the effectiveness and feasibility of the proposed approach. It's demonstrated that the proposed approach outperforms the other SC methods for unsupervised classification of the machine monitoring data. The classification of machine monitoring data with the proposed approach has a potential value in machine performance and geological risk assessment during shield tunneling construction." @default.
- W2967217103 created "2019-08-22" @default.
- W2967217103 creator A5001282638 @default.
- W2967217103 creator A5022352705 @default.
- W2967217103 creator A5037578621 @default.
- W2967217103 creator A5039343417 @default.
- W2967217103 creator A5085411368 @default.
- W2967217103 date "2019-11-01" @default.
- W2967217103 modified "2023-10-09" @default.
- W2967217103 title "Unsupervised spectral clustering for shield tunneling machine monitoring data with complex network theory" @default.
- W2967217103 cites W1091928747 @default.
- W2967217103 cites W1918283572 @default.
- W2967217103 cites W1967531152 @default.
- W2967217103 cites W1974721302 @default.
- W2967217103 cites W1975132043 @default.
- W2967217103 cites W1979955537 @default.
- W2967217103 cites W1988956820 @default.
- W2967217103 cites W1989186415 @default.
- W2967217103 cites W1992419399 @default.
- W2967217103 cites W1997423158 @default.
- W2967217103 cites W2006538047 @default.
- W2967217103 cites W2006952036 @default.
- W2967217103 cites W2011430131 @default.
- W2967217103 cites W2015245929 @default.
- W2967217103 cites W2015916019 @default.
- W2967217103 cites W2019775304 @default.
- W2967217103 cites W2026744675 @default.
- W2967217103 cites W2064579244 @default.
- W2967217103 cites W2067401145 @default.
- W2967217103 cites W2081544399 @default.
- W2967217103 cites W2090073168 @default.
- W2967217103 cites W2105476053 @default.
- W2967217103 cites W2132914434 @default.
- W2967217103 cites W2260462217 @default.
- W2967217103 cites W2413329758 @default.
- W2967217103 cites W2507333996 @default.
- W2967217103 cites W2511371417 @default.
- W2967217103 cites W2519928549 @default.
- W2967217103 cites W2520303620 @default.
- W2967217103 cites W2533800772 @default.
- W2967217103 cites W2593620947 @default.
- W2967217103 cites W2607692599 @default.
- W2967217103 cites W2615358976 @default.
- W2967217103 cites W2621250627 @default.
- W2967217103 cites W2728789242 @default.
- W2967217103 cites W2741527112 @default.
- W2967217103 cites W2751968371 @default.
- W2967217103 cites W2754438920 @default.
- W2967217103 cites W2769334904 @default.
- W2967217103 cites W2774079441 @default.
- W2967217103 cites W2775317516 @default.
- W2967217103 cites W2779176574 @default.
- W2967217103 cites W2788970402 @default.
- W2967217103 cites W2790207991 @default.
- W2967217103 cites W2792140845 @default.
- W2967217103 cites W2794294714 @default.
- W2967217103 cites W2796506861 @default.
- W2967217103 cites W2884762388 @default.
- W2967217103 cites W2889272682 @default.
- W2967217103 cites W2889369603 @default.
- W2967217103 cites W2901879358 @default.
- W2967217103 cites W2902525349 @default.
- W2967217103 cites W2905468702 @default.
- W2967217103 cites W2919115771 @default.
- W2967217103 cites W2933454653 @default.
- W2967217103 cites W951985441 @default.
- W2967217103 cites W956374238 @default.
- W2967217103 doi "https://doi.org/10.1016/j.autcon.2019.102924" @default.
- W2967217103 hasPublicationYear "2019" @default.
- W2967217103 type Work @default.
- W2967217103 sameAs 2967217103 @default.
- W2967217103 citedByCount "26" @default.
- W2967217103 countsByYear W29672171032020 @default.
- W2967217103 countsByYear W29672171032021 @default.
- W2967217103 countsByYear W29672171032022 @default.
- W2967217103 countsByYear W29672171032023 @default.
- W2967217103 crossrefType "journal-article" @default.
- W2967217103 hasAuthorship W2967217103A5001282638 @default.
- W2967217103 hasAuthorship W2967217103A5022352705 @default.
- W2967217103 hasAuthorship W2967217103A5037578621 @default.
- W2967217103 hasAuthorship W2967217103A5039343417 @default.
- W2967217103 hasAuthorship W2967217103A5085411368 @default.
- W2967217103 hasConcept C105611402 @default.
- W2967217103 hasConcept C120398109 @default.
- W2967217103 hasConcept C121332964 @default.
- W2967217103 hasConcept C124101348 @default.
- W2967217103 hasConcept C127413603 @default.
- W2967217103 hasConcept C153180895 @default.
- W2967217103 hasConcept C154945302 @default.
- W2967217103 hasConcept C41008148 @default.
- W2967217103 hasConcept C49040817 @default.
- W2967217103 hasConcept C73555534 @default.
- W2967217103 hasConceptScore W2967217103C105611402 @default.
- W2967217103 hasConceptScore W2967217103C120398109 @default.
- W2967217103 hasConceptScore W2967217103C121332964 @default.
- W2967217103 hasConceptScore W2967217103C124101348 @default.
- W2967217103 hasConceptScore W2967217103C127413603 @default.
- W2967217103 hasConceptScore W2967217103C153180895 @default.