Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967231844> ?p ?o ?g. }
- W2967231844 endingPage "1950033" @default.
- W2967231844 startingPage "1950033" @default.
- W2967231844 abstract "One can either use machine learning techniques or lexicons to undertake sentiment analysis. Machine learning techniques include text classification algorithms like SVM, naive Bayes, decision tree or logistic regression, whereas lexicon-based sentiment analysis uses either general or domain-based lexicons. In this paper, we investigate the effectiveness of domain lexicons vis-à-vis general lexicon, wherein we have performed aspect-level sentiment analysis on data from three different domains, viz. car, guitar and book. While it is intuitive that domain lexicons will always perform better than general lexicons, the actual performance however may depend on the richness of the concerned domain lexicon as well as the text analysed. We used the general lexicon SentiWordNet and the corresponding domain lexicons in the aforesaid domains to compare their relative performances. The results indicate that domain lexicon used along with general lexicon performs better as compared to general lexicon or domain lexicon, when used alone. They also suggest that the performance of domain lexicons depends on the text content; and also on whether the language involves technical or non-technical words in the concerned domain. This paper makes a case for development of domain lexicons across various domains for improved performance, while gathering that they might not always perform better. It further highlights that the importance of general lexicons cannot be underestimated — the best results for aspect-level sentiment analysis are obtained, as per this paper, when both the domain and general lexicons are used side by side." @default.
- W2967231844 created "2019-08-22" @default.
- W2967231844 creator A5012821808 @default.
- W2967231844 creator A5012892639 @default.
- W2967231844 date "2019-09-01" @default.
- W2967231844 modified "2023-09-26" @default.
- W2967231844 title "Effectiveness of Domain-Based Lexicons vis-à-vis General Lexicon for Aspect-Level Sentiment Analysis: A Comparative Analysis" @default.
- W2967231844 cites W1501931667 @default.
- W2967231844 cites W1530361491 @default.
- W2967231844 cites W187383899 @default.
- W2967231844 cites W1908808128 @default.
- W2967231844 cites W1963858130 @default.
- W2967231844 cites W1964613733 @default.
- W2967231844 cites W1964976907 @default.
- W2967231844 cites W1976064898 @default.
- W2967231844 cites W1981828013 @default.
- W2967231844 cites W2012070465 @default.
- W2967231844 cites W2019759670 @default.
- W2967231844 cites W2037632172 @default.
- W2967231844 cites W2050075801 @default.
- W2967231844 cites W2051220245 @default.
- W2967231844 cites W2056596884 @default.
- W2967231844 cites W2067767241 @default.
- W2967231844 cites W2082935746 @default.
- W2967231844 cites W2086277751 @default.
- W2967231844 cites W2089597365 @default.
- W2967231844 cites W2090520750 @default.
- W2967231844 cites W2110620835 @default.
- W2967231844 cites W2120626200 @default.
- W2967231844 cites W2138854216 @default.
- W2967231844 cites W2139979941 @default.
- W2967231844 cites W2141575637 @default.
- W2967231844 cites W2143902425 @default.
- W2967231844 cites W2168231245 @default.
- W2967231844 cites W2178294677 @default.
- W2967231844 cites W2194578903 @default.
- W2967231844 cites W2215376118 @default.
- W2967231844 cites W2253519362 @default.
- W2967231844 cites W2276215713 @default.
- W2967231844 cites W2279645571 @default.
- W2967231844 cites W2294363208 @default.
- W2967231844 cites W2306941105 @default.
- W2967231844 cites W2406624406 @default.
- W2967231844 cites W2427312199 @default.
- W2967231844 cites W2491578912 @default.
- W2967231844 cites W2515197428 @default.
- W2967231844 cites W2518490470 @default.
- W2967231844 cites W2538253083 @default.
- W2967231844 cites W2546935677 @default.
- W2967231844 cites W2547440287 @default.
- W2967231844 cites W2556605533 @default.
- W2967231844 cites W2560654344 @default.
- W2967231844 cites W2565145181 @default.
- W2967231844 cites W2584429674 @default.
- W2967231844 cites W2591649529 @default.
- W2967231844 cites W2626561952 @default.
- W2967231844 cites W2745862583 @default.
- W2967231844 cites W2749564305 @default.
- W2967231844 cites W2767058267 @default.
- W2967231844 cites W2769317996 @default.
- W2967231844 cites W2781487490 @default.
- W2967231844 cites W2786411768 @default.
- W2967231844 cites W2789511524 @default.
- W2967231844 cites W2790309729 @default.
- W2967231844 cites W2790589292 @default.
- W2967231844 cites W2791061589 @default.
- W2967231844 cites W2796018820 @default.
- W2967231844 cites W2796221039 @default.
- W2967231844 cites W2797669327 @default.
- W2967231844 cites W2803483156 @default.
- W2967231844 cites W2887856105 @default.
- W2967231844 cites W2963042536 @default.
- W2967231844 cites W2963337756 @default.
- W2967231844 cites W2963874170 @default.
- W2967231844 cites W2964325543 @default.
- W2967231844 cites W3176158745 @default.
- W2967231844 cites W4205184193 @default.
- W2967231844 doi "https://doi.org/10.1142/s0219649219500333" @default.
- W2967231844 hasPublicationYear "2019" @default.
- W2967231844 type Work @default.
- W2967231844 sameAs 2967231844 @default.
- W2967231844 citedByCount "4" @default.
- W2967231844 countsByYear W29672318442022 @default.
- W2967231844 countsByYear W29672318442023 @default.
- W2967231844 crossrefType "journal-article" @default.
- W2967231844 hasAuthorship W2967231844A5012821808 @default.
- W2967231844 hasAuthorship W2967231844A5012892639 @default.
- W2967231844 hasConcept C119857082 @default.
- W2967231844 hasConcept C12267149 @default.
- W2967231844 hasConcept C134306372 @default.
- W2967231844 hasConcept C154945302 @default.
- W2967231844 hasConcept C204321447 @default.
- W2967231844 hasConcept C2778121359 @default.
- W2967231844 hasConcept C33923547 @default.
- W2967231844 hasConcept C36503486 @default.
- W2967231844 hasConcept C41008148 @default.
- W2967231844 hasConcept C52001869 @default.
- W2967231844 hasConcept C66402592 @default.