Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967275855> ?p ?o ?g. }
- W2967275855 endingPage "9899" @default.
- W2967275855 startingPage "9888" @default.
- W2967275855 abstract "Compressive sensing enables efficient acquisition of hyperspectral images (HSIs) by assuming high redundancy on natural scenes. Several reconstruction algorithms have been proposed to retrieve the underlying image, and most of them take advantage of the spatial and spectral correlations. However, reconstruction may not be necessary in certain applications such as land cover classification. Instead of knowing the full image, researchers are interested in features that could be extracted directly from the compressed measurements, which provide high inference capabilities. Low-rank (LR) matrix approximation has been widely used in feature extraction (FE), because it reduces the data dimension and computational cost. Therefore, in this paper, compressive hyperspectral imaging and FE are combined in a framework for HSI classification using an LR matrix approximation model. In the proposed framework, the compressed measurements are acquired from a single-pixel spectrometer. Instead of using the traditional high-complexity reconstruction model, an LR matrix factorization problem is formulated. The LR problem maximizes the posterior distribution with respect to the feature space and coefficients, and it is numerically solved based on an alternating optimization strategy. By incorporating spatial information, the numerical procedure minimizes the total variational of the feature coefficients subject to an orthogonality constraint for the feature space. Experiments on real HSIs show that the proposed approach can provide equally competitive classification results when compared to the traditional approach that performs FE and classification on the recovered images." @default.
- W2967275855 created "2019-08-22" @default.
- W2967275855 creator A5048109795 @default.
- W2967275855 creator A5081714132 @default.
- W2967275855 date "2019-12-01" @default.
- W2967275855 modified "2023-09-24" @default.
- W2967275855 title "A Low-Rank Model for Compressive Spectral Image Classification" @default.
- W2967275855 cites W1540764732 @default.
- W2967275855 cites W1588948804 @default.
- W2967275855 cites W1593447321 @default.
- W2967275855 cites W1935101545 @default.
- W2967275855 cites W1965572344 @default.
- W2967275855 cites W1966680272 @default.
- W2967275855 cites W1972552174 @default.
- W2967275855 cites W1992400371 @default.
- W2967275855 cites W1993312340 @default.
- W2967275855 cites W1997164347 @default.
- W2967275855 cites W1997565609 @default.
- W2967275855 cites W2031191822 @default.
- W2967275855 cites W2039596145 @default.
- W2967275855 cites W2042948547 @default.
- W2967275855 cites W2044439250 @default.
- W2967275855 cites W2046793177 @default.
- W2967275855 cites W2053514113 @default.
- W2967275855 cites W2056672982 @default.
- W2967275855 cites W2061443113 @default.
- W2967275855 cites W2066792693 @default.
- W2967275855 cites W2075394305 @default.
- W2967275855 cites W2082639035 @default.
- W2967275855 cites W2083541351 @default.
- W2967275855 cites W2086953401 @default.
- W2967275855 cites W2092569534 @default.
- W2967275855 cites W2095044247 @default.
- W2967275855 cites W2100556411 @default.
- W2967275855 cites W2104266187 @default.
- W2967275855 cites W2108597246 @default.
- W2967275855 cites W2109357213 @default.
- W2967275855 cites W2114456237 @default.
- W2967275855 cites W2122548617 @default.
- W2967275855 cites W2125880329 @default.
- W2967275855 cites W2136251662 @default.
- W2967275855 cites W2159563318 @default.
- W2967275855 cites W2163886442 @default.
- W2967275855 cites W2171810522 @default.
- W2967275855 cites W2324228094 @default.
- W2967275855 cites W2342181855 @default.
- W2967275855 cites W2496621835 @default.
- W2967275855 cites W2598066171 @default.
- W2967275855 cites W2736005225 @default.
- W2967275855 cites W2768095459 @default.
- W2967275855 cites W2891364229 @default.
- W2967275855 cites W2923641665 @default.
- W2967275855 cites W3102095506 @default.
- W2967275855 cites W4233760599 @default.
- W2967275855 cites W4244393449 @default.
- W2967275855 cites W4250955649 @default.
- W2967275855 cites W4292363360 @default.
- W2967275855 doi "https://doi.org/10.1109/tgrs.2019.2930037" @default.
- W2967275855 hasPublicationYear "2019" @default.
- W2967275855 type Work @default.
- W2967275855 sameAs 2967275855 @default.
- W2967275855 citedByCount "8" @default.
- W2967275855 countsByYear W29672758552021 @default.
- W2967275855 countsByYear W29672758552022 @default.
- W2967275855 countsByYear W29672758552023 @default.
- W2967275855 crossrefType "journal-article" @default.
- W2967275855 hasAuthorship W2967275855A5048109795 @default.
- W2967275855 hasAuthorship W2967275855A5081714132 @default.
- W2967275855 hasConcept C111919701 @default.
- W2967275855 hasConcept C11413529 @default.
- W2967275855 hasConcept C121332964 @default.
- W2967275855 hasConcept C124851039 @default.
- W2967275855 hasConcept C138885662 @default.
- W2967275855 hasConcept C141379421 @default.
- W2967275855 hasConcept C152124472 @default.
- W2967275855 hasConcept C153180895 @default.
- W2967275855 hasConcept C154945302 @default.
- W2967275855 hasConcept C158693339 @default.
- W2967275855 hasConcept C159078339 @default.
- W2967275855 hasConcept C2776401178 @default.
- W2967275855 hasConcept C41008148 @default.
- W2967275855 hasConcept C41895202 @default.
- W2967275855 hasConcept C42355184 @default.
- W2967275855 hasConcept C52622490 @default.
- W2967275855 hasConcept C62520636 @default.
- W2967275855 hasConcept C83665646 @default.
- W2967275855 hasConceptScore W2967275855C111919701 @default.
- W2967275855 hasConceptScore W2967275855C11413529 @default.
- W2967275855 hasConceptScore W2967275855C121332964 @default.
- W2967275855 hasConceptScore W2967275855C124851039 @default.
- W2967275855 hasConceptScore W2967275855C138885662 @default.
- W2967275855 hasConceptScore W2967275855C141379421 @default.
- W2967275855 hasConceptScore W2967275855C152124472 @default.
- W2967275855 hasConceptScore W2967275855C153180895 @default.
- W2967275855 hasConceptScore W2967275855C154945302 @default.
- W2967275855 hasConceptScore W2967275855C158693339 @default.
- W2967275855 hasConceptScore W2967275855C159078339 @default.
- W2967275855 hasConceptScore W2967275855C2776401178 @default.