Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967341839> ?p ?o ?g. }
- W2967341839 endingPage "144302" @default.
- W2967341839 startingPage "144292" @default.
- W2967341839 abstract "The effectiveness of biosignal generation and data augmentation with biosignal generative models based on generative adversarial networks (GANs), which are a type of deep learning technique, was demonstrated in our previous paper. GAN-based generative models only learn the projection between a random distribution as input data and the distribution of training data.Therefore, the relationship between input and generated data is unclear, and the characteristics of the data generated from this model cannot be controlled. This study proposes a method for generating time-series data based on GANs and explores their ability to generate biosignals with certain classes and characteristics. Moreover, in the proposed method, latent variables are analyzed using canonical correlation analysis (CCA) to represent the relationship between input and generated data as canonical loadings. Using these loadings, we can control the characteristics of the data generated by the proposed method. The influence of class labels on generated data is analyzed by feeding the data interpolated between two class labels into the generator of the proposed GANs. The CCA of the latent variables is shown to be an effective method of controlling the generated data characteristics. We are able to model the distribution of the time-series data without requiring domain-dependent knowledge using the proposed method. Furthermore, it is possible to control the characteristics of these data by analyzing the model trained using the proposed method. To the best of our knowledge, this work is the first to generate biosignals using GANs while controlling the characteristics of the generated data." @default.
- W2967341839 created "2019-08-22" @default.
- W2967341839 creator A5014439017 @default.
- W2967341839 creator A5018884738 @default.
- W2967341839 creator A5051387162 @default.
- W2967341839 date "2019-01-01" @default.
- W2967341839 modified "2023-10-17" @default.
- W2967341839 title "Biosignal Generation and Latent Variable Analysis With Recurrent Generative Adversarial Networks" @default.
- W2967341839 cites W1971416249 @default.
- W2967341839 cites W2004581801 @default.
- W2967341839 cites W2007811545 @default.
- W2967341839 cites W2008462638 @default.
- W2967341839 cites W2040572095 @default.
- W2967341839 cites W2053744708 @default.
- W2967341839 cites W2064675550 @default.
- W2967341839 cites W2083125747 @default.
- W2967341839 cites W2091735588 @default.
- W2967341839 cites W2108563286 @default.
- W2967341839 cites W2128160875 @default.
- W2967341839 cites W2132904166 @default.
- W2967341839 cites W2141885969 @default.
- W2967341839 cites W2162613571 @default.
- W2967341839 cites W2555077524 @default.
- W2967341839 cites W2617938108 @default.
- W2967341839 cites W2621205740 @default.
- W2967341839 cites W2754331792 @default.
- W2967341839 cites W2779466124 @default.
- W2967341839 cites W2799380717 @default.
- W2967341839 cites W2962793481 @default.
- W2967341839 cites W2963470893 @default.
- W2967341839 cites W2963919481 @default.
- W2967341839 doi "https://doi.org/10.1109/access.2019.2934928" @default.
- W2967341839 hasPublicationYear "2019" @default.
- W2967341839 type Work @default.
- W2967341839 sameAs 2967341839 @default.
- W2967341839 citedByCount "21" @default.
- W2967341839 countsByYear W29673418392019 @default.
- W2967341839 countsByYear W29673418392020 @default.
- W2967341839 countsByYear W29673418392021 @default.
- W2967341839 countsByYear W29673418392022 @default.
- W2967341839 countsByYear W29673418392023 @default.
- W2967341839 crossrefType "journal-article" @default.
- W2967341839 hasAuthorship W2967341839A5014439017 @default.
- W2967341839 hasAuthorship W2967341839A5018884738 @default.
- W2967341839 hasAuthorship W2967341839A5051387162 @default.
- W2967341839 hasBestOaLocation W29673418391 @default.
- W2967341839 hasConcept C119857082 @default.
- W2967341839 hasConcept C121332964 @default.
- W2967341839 hasConcept C124101348 @default.
- W2967341839 hasConcept C153180895 @default.
- W2967341839 hasConcept C153874254 @default.
- W2967341839 hasConcept C154945302 @default.
- W2967341839 hasConcept C163258240 @default.
- W2967341839 hasConcept C167966045 @default.
- W2967341839 hasConcept C2779055241 @default.
- W2967341839 hasConcept C2780992000 @default.
- W2967341839 hasConcept C39890363 @default.
- W2967341839 hasConcept C41008148 @default.
- W2967341839 hasConcept C51167844 @default.
- W2967341839 hasConcept C555944384 @default.
- W2967341839 hasConcept C62520636 @default.
- W2967341839 hasConcept C67186912 @default.
- W2967341839 hasConcept C76155785 @default.
- W2967341839 hasConcept C77088390 @default.
- W2967341839 hasConceptScore W2967341839C119857082 @default.
- W2967341839 hasConceptScore W2967341839C121332964 @default.
- W2967341839 hasConceptScore W2967341839C124101348 @default.
- W2967341839 hasConceptScore W2967341839C153180895 @default.
- W2967341839 hasConceptScore W2967341839C153874254 @default.
- W2967341839 hasConceptScore W2967341839C154945302 @default.
- W2967341839 hasConceptScore W2967341839C163258240 @default.
- W2967341839 hasConceptScore W2967341839C167966045 @default.
- W2967341839 hasConceptScore W2967341839C2779055241 @default.
- W2967341839 hasConceptScore W2967341839C2780992000 @default.
- W2967341839 hasConceptScore W2967341839C39890363 @default.
- W2967341839 hasConceptScore W2967341839C41008148 @default.
- W2967341839 hasConceptScore W2967341839C51167844 @default.
- W2967341839 hasConceptScore W2967341839C555944384 @default.
- W2967341839 hasConceptScore W2967341839C62520636 @default.
- W2967341839 hasConceptScore W2967341839C67186912 @default.
- W2967341839 hasConceptScore W2967341839C76155785 @default.
- W2967341839 hasConceptScore W2967341839C77088390 @default.
- W2967341839 hasFunder F4320334764 @default.
- W2967341839 hasLocation W29673418391 @default.
- W2967341839 hasLocation W29673418392 @default.
- W2967341839 hasLocation W29673418393 @default.
- W2967341839 hasOpenAccess W2967341839 @default.
- W2967341839 hasPrimaryLocation W29673418391 @default.
- W2967341839 hasRelatedWork W2742479045 @default.
- W2967341839 hasRelatedWork W2769954154 @default.
- W2967341839 hasRelatedWork W2787151388 @default.
- W2967341839 hasRelatedWork W2946446899 @default.
- W2967341839 hasRelatedWork W2964245526 @default.
- W2967341839 hasRelatedWork W2967341839 @default.
- W2967341839 hasRelatedWork W3048300639 @default.
- W2967341839 hasRelatedWork W3135390601 @default.
- W2967341839 hasRelatedWork W4320930631 @default.
- W2967341839 hasRelatedWork W4287284413 @default.