Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967372777> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2967372777 endingPage "105981" @default.
- W2967372777 startingPage "105981" @default.
- W2967372777 abstract "Porosity is an integral part of thermal barrier coatings (TBCs) and is required to provide thermal insulation and to accommodate operational thermal stresses. Accurate characterization of the TBCs porosity is difficult due to the complex pore morphology and ultra-thin coating thickness. In this paper, a BP neural network optimizing Gaussian process regression (GPR) algorithm, termed BP-GPR, is presented to characterize the TBCs porosity based on a constructed ultrasonic reflection coefficient amplitude spectrum (URCAS). The characteristic parameters of URCAS are optimized through the BP neural network combined with a high determination coefficient R2 rule. Then the optimized parameters are utilized to train the GPR algorithm for predicting the unknown TBCs porosity. The proposed BP-GPR method was demonstrated through a series of finite element method (FEM) simulations, which were implemented on random pore models (RPMs) of plasma spraying ZrO2 coating with a thickness of 300 μm and porosities of 1%, 3%, 5%, 7%, and 9%. Simulation results indicated the relative errors of the predicted porosity of RPMs were 6.37%, 7.62%, 1.07%, and 1.07%, respectively, which has 32% and 48% accuracy higher than that predicted only by BP neural network or GPR algorithm. It is verified that the proposed BP-GPR method can accurately characterize the porosity of TBCs with complex pore morphology." @default.
- W2967372777 created "2019-08-22" @default.
- W2967372777 creator A5040647242 @default.
- W2967372777 creator A5052016306 @default.
- W2967372777 creator A5059580398 @default.
- W2967372777 creator A5066763843 @default.
- W2967372777 creator A5069094306 @default.
- W2967372777 creator A5091360036 @default.
- W2967372777 date "2020-01-01" @default.
- W2967372777 modified "2023-10-09" @default.
- W2967372777 title "Ultrasonic characterization of thermal barrier coatings porosity through BP neural network optimizing Gaussian process regression algorithm" @default.
- W2967372777 cites W1972967783 @default.
- W2967372777 cites W1986493359 @default.
- W2967372777 cites W2010992846 @default.
- W2967372777 cites W2032171382 @default.
- W2967372777 cites W2033781369 @default.
- W2967372777 cites W2046084401 @default.
- W2967372777 cites W2064446387 @default.
- W2967372777 cites W2069135678 @default.
- W2967372777 cites W2076367639 @default.
- W2967372777 cites W2095170788 @default.
- W2967372777 cites W2123162799 @default.
- W2967372777 cites W2157206432 @default.
- W2967372777 cites W2192203593 @default.
- W2967372777 cites W2769845696 @default.
- W2967372777 cites W2899657921 @default.
- W2967372777 cites W3103235214 @default.
- W2967372777 cites W4249239251 @default.
- W2967372777 doi "https://doi.org/10.1016/j.ultras.2019.105981" @default.
- W2967372777 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31479965" @default.
- W2967372777 hasPublicationYear "2020" @default.
- W2967372777 type Work @default.
- W2967372777 sameAs 2967372777 @default.
- W2967372777 citedByCount "30" @default.
- W2967372777 countsByYear W29673727772020 @default.
- W2967372777 countsByYear W29673727772021 @default.
- W2967372777 countsByYear W29673727772022 @default.
- W2967372777 countsByYear W29673727772023 @default.
- W2967372777 crossrefType "journal-article" @default.
- W2967372777 hasAuthorship W2967372777A5040647242 @default.
- W2967372777 hasAuthorship W2967372777A5052016306 @default.
- W2967372777 hasAuthorship W2967372777A5059580398 @default.
- W2967372777 hasAuthorship W2967372777A5066763843 @default.
- W2967372777 hasAuthorship W2967372777A5069094306 @default.
- W2967372777 hasAuthorship W2967372777A5091360036 @default.
- W2967372777 hasConcept C11413529 @default.
- W2967372777 hasConcept C119857082 @default.
- W2967372777 hasConcept C120665830 @default.
- W2967372777 hasConcept C121332964 @default.
- W2967372777 hasConcept C159985019 @default.
- W2967372777 hasConcept C176711861 @default.
- W2967372777 hasConcept C192562407 @default.
- W2967372777 hasConcept C2781448156 @default.
- W2967372777 hasConcept C41008148 @default.
- W2967372777 hasConcept C41700454 @default.
- W2967372777 hasConcept C50644808 @default.
- W2967372777 hasConcept C554190296 @default.
- W2967372777 hasConcept C6648577 @default.
- W2967372777 hasConcept C71813955 @default.
- W2967372777 hasConcept C76155785 @default.
- W2967372777 hasConcept C81692654 @default.
- W2967372777 hasConceptScore W2967372777C11413529 @default.
- W2967372777 hasConceptScore W2967372777C119857082 @default.
- W2967372777 hasConceptScore W2967372777C120665830 @default.
- W2967372777 hasConceptScore W2967372777C121332964 @default.
- W2967372777 hasConceptScore W2967372777C159985019 @default.
- W2967372777 hasConceptScore W2967372777C176711861 @default.
- W2967372777 hasConceptScore W2967372777C192562407 @default.
- W2967372777 hasConceptScore W2967372777C2781448156 @default.
- W2967372777 hasConceptScore W2967372777C41008148 @default.
- W2967372777 hasConceptScore W2967372777C41700454 @default.
- W2967372777 hasConceptScore W2967372777C50644808 @default.
- W2967372777 hasConceptScore W2967372777C554190296 @default.
- W2967372777 hasConceptScore W2967372777C6648577 @default.
- W2967372777 hasConceptScore W2967372777C71813955 @default.
- W2967372777 hasConceptScore W2967372777C76155785 @default.
- W2967372777 hasConceptScore W2967372777C81692654 @default.
- W2967372777 hasFunder F4320321001 @default.
- W2967372777 hasLocation W29673727771 @default.
- W2967372777 hasLocation W29673727772 @default.
- W2967372777 hasOpenAccess W2967372777 @default.
- W2967372777 hasPrimaryLocation W29673727771 @default.
- W2967372777 hasRelatedWork W1901401456 @default.
- W2967372777 hasRelatedWork W2043535345 @default.
- W2967372777 hasRelatedWork W2075580692 @default.
- W2967372777 hasRelatedWork W2093275523 @default.
- W2967372777 hasRelatedWork W2333545241 @default.
- W2967372777 hasRelatedWork W2384279159 @default.
- W2967372777 hasRelatedWork W2967372777 @default.
- W2967372777 hasRelatedWork W3141449356 @default.
- W2967372777 hasRelatedWork W4220749225 @default.
- W2967372777 hasRelatedWork W4281386618 @default.
- W2967372777 hasVolume "100" @default.
- W2967372777 isParatext "false" @default.
- W2967372777 isRetracted "false" @default.
- W2967372777 magId "2967372777" @default.
- W2967372777 workType "article" @default.