Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967398423> ?p ?o ?g. }
- W2967398423 abstract "CNN-based trackers are easily interfered by insufficient feature learning, causing model drift. In recent years, graph convolutional networks (GCNs) have been widely used for the representation of graph data in the fields of machine learning and computer vision. In our work, we employ a GCN module to learn structural features for visual tracking. First, we utilize a dual path network to extract heterogeneous features. Then, we adopt a GCN module to construct features to have structured information. Finally, we connect all the features and use the attention mechanism to adaptively select features. Extensive experiments on two benchmark datasets validate the effectiveness of our approach." @default.
- W2967398423 created "2019-08-22" @default.
- W2967398423 creator A5017694550 @default.
- W2967398423 creator A5018878455 @default.
- W2967398423 creator A5043153251 @default.
- W2967398423 creator A5053609164 @default.
- W2967398423 date "2019-07-01" @default.
- W2967398423 modified "2023-09-24" @default.
- W2967398423 title "Visual Object Tracking via Graph Convolutional Representation" @default.
- W2967398423 cites W114517082 @default.
- W2967398423 cites W1665214252 @default.
- W2967398423 cites W1686810756 @default.
- W2967398423 cites W1799366690 @default.
- W2967398423 cites W1854404533 @default.
- W2967398423 cites W1857884451 @default.
- W2967398423 cites W1915785815 @default.
- W2967398423 cites W2089961441 @default.
- W2967398423 cites W2117539524 @default.
- W2967398423 cites W2158592639 @default.
- W2967398423 cites W2186330282 @default.
- W2967398423 cites W2214352687 @default.
- W2967398423 cites W2469582947 @default.
- W2967398423 cites W2518013266 @default.
- W2967398423 cites W2519887557 @default.
- W2967398423 cites W2556108308 @default.
- W2967398423 cites W2737572441 @default.
- W2967398423 cites W2738318237 @default.
- W2967398423 cites W2897436422 @default.
- W2967398423 cites W2901359197 @default.
- W2967398423 cites W2913326947 @default.
- W2967398423 cites W2915935370 @default.
- W2967398423 cites W2916780012 @default.
- W2967398423 cites W2963076818 @default.
- W2967398423 cites W2963173190 @default.
- W2967398423 cites W2963420686 @default.
- W2967398423 cites W2963465695 @default.
- W2967398423 cites W2963879480 @default.
- W2967398423 cites W2964242925 @default.
- W2967398423 cites W2964321699 @default.
- W2967398423 doi "https://doi.org/10.1109/icmew.2019.00-81" @default.
- W2967398423 hasPublicationYear "2019" @default.
- W2967398423 type Work @default.
- W2967398423 sameAs 2967398423 @default.
- W2967398423 citedByCount "3" @default.
- W2967398423 countsByYear W29673984232020 @default.
- W2967398423 crossrefType "proceedings-article" @default.
- W2967398423 hasAuthorship W2967398423A5017694550 @default.
- W2967398423 hasAuthorship W2967398423A5018878455 @default.
- W2967398423 hasAuthorship W2967398423A5043153251 @default.
- W2967398423 hasAuthorship W2967398423A5053609164 @default.
- W2967398423 hasConcept C119857082 @default.
- W2967398423 hasConcept C132525143 @default.
- W2967398423 hasConcept C13280743 @default.
- W2967398423 hasConcept C153180895 @default.
- W2967398423 hasConcept C154945302 @default.
- W2967398423 hasConcept C17744445 @default.
- W2967398423 hasConcept C185798385 @default.
- W2967398423 hasConcept C199539241 @default.
- W2967398423 hasConcept C202474056 @default.
- W2967398423 hasConcept C205649164 @default.
- W2967398423 hasConcept C2776359362 @default.
- W2967398423 hasConcept C2781238097 @default.
- W2967398423 hasConcept C41008148 @default.
- W2967398423 hasConcept C56461940 @default.
- W2967398423 hasConcept C57501372 @default.
- W2967398423 hasConcept C59404180 @default.
- W2967398423 hasConcept C80444323 @default.
- W2967398423 hasConcept C81363708 @default.
- W2967398423 hasConcept C94625758 @default.
- W2967398423 hasConceptScore W2967398423C119857082 @default.
- W2967398423 hasConceptScore W2967398423C132525143 @default.
- W2967398423 hasConceptScore W2967398423C13280743 @default.
- W2967398423 hasConceptScore W2967398423C153180895 @default.
- W2967398423 hasConceptScore W2967398423C154945302 @default.
- W2967398423 hasConceptScore W2967398423C17744445 @default.
- W2967398423 hasConceptScore W2967398423C185798385 @default.
- W2967398423 hasConceptScore W2967398423C199539241 @default.
- W2967398423 hasConceptScore W2967398423C202474056 @default.
- W2967398423 hasConceptScore W2967398423C205649164 @default.
- W2967398423 hasConceptScore W2967398423C2776359362 @default.
- W2967398423 hasConceptScore W2967398423C2781238097 @default.
- W2967398423 hasConceptScore W2967398423C41008148 @default.
- W2967398423 hasConceptScore W2967398423C56461940 @default.
- W2967398423 hasConceptScore W2967398423C57501372 @default.
- W2967398423 hasConceptScore W2967398423C59404180 @default.
- W2967398423 hasConceptScore W2967398423C80444323 @default.
- W2967398423 hasConceptScore W2967398423C81363708 @default.
- W2967398423 hasConceptScore W2967398423C94625758 @default.
- W2967398423 hasLocation W29673984231 @default.
- W2967398423 hasOpenAccess W2967398423 @default.
- W2967398423 hasPrimaryLocation W29673984231 @default.
- W2967398423 hasRelatedWork W2280226538 @default.
- W2967398423 hasRelatedWork W2510303009 @default.
- W2967398423 hasRelatedWork W2541605107 @default.
- W2967398423 hasRelatedWork W2889871149 @default.
- W2967398423 hasRelatedWork W2903453900 @default.
- W2967398423 hasRelatedWork W2912197073 @default.
- W2967398423 hasRelatedWork W2918797960 @default.
- W2967398423 hasRelatedWork W2950832586 @default.
- W2967398423 hasRelatedWork W2952119976 @default.