Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967424934> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2967424934 abstract "The optimization of thousands of variables, Large-Scale Global Optimization, is a research topic that is obtaining more and more attention by its applications in engineering and medical problems. In order to design evolutionary algorithms for these problems, several specific competitions have been organized, using benchmarks such as the ones proposed in CEC'2010 and CEC'2013, trying to simulate realistic features of real-world problems. Several algorithms have been proposed, some of them being very competitive on these benchmarks, especially during the last years. However, all of them were tested only on those artificial benchmarks, so there are no guarantees that they would obtain good performance in more realistic problems. In this paper, we select the best algorithms in these competitions to optimize a real-world problem, an electroencephalography (EEG) optimization problem. The new benchmark contains noisy problems and an increasing number of variables (up to 5000) compared to synthetic benchmarks (limited to 1000 variables). Results show that, although the fitness obtained by the majority of the algorithms is the same, the processing time strongly depends on the algorithm under consideration. The optimization time for a fixed number of fitness evaluations varies, in the most complex problems, from 3 hours to around 18 minutes, being MOS-2013 the fastest algorithm. However, if we focus our attention on the time needed to reach the best-known solution, SHADEILS becomes the fastest algorithm (with a maximum of three minutes). In our opinion, this should encourage researchers to continue working in more scalable and efficient algorithms for large-scale global optimization." @default.
- W2967424934 created "2019-08-22" @default.
- W2967424934 creator A5027477467 @default.
- W2967424934 creator A5030033407 @default.
- W2967424934 creator A5070068995 @default.
- W2967424934 date "2019-06-01" @default.
- W2967424934 modified "2023-10-18" @default.
- W2967424934 title "Comparing Large-Scale Global Optimization Competition winners in a real-world problem" @default.
- W2967424934 cites W1495940401 @default.
- W2967424934 cites W1517368642 @default.
- W2967424934 cites W1573534773 @default.
- W2967424934 cites W1969549583 @default.
- W2967424934 cites W2078617346 @default.
- W2967424934 cites W2083206808 @default.
- W2967424934 cites W2138588773 @default.
- W2967424934 cites W2145418868 @default.
- W2967424934 cites W2802050029 @default.
- W2967424934 cites W2897073410 @default.
- W2967424934 doi "https://doi.org/10.1109/cec.2019.8789943" @default.
- W2967424934 hasPublicationYear "2019" @default.
- W2967424934 type Work @default.
- W2967424934 sameAs 2967424934 @default.
- W2967424934 citedByCount "3" @default.
- W2967424934 countsByYear W29674249342021 @default.
- W2967424934 countsByYear W29674249342023 @default.
- W2967424934 crossrefType "proceedings-article" @default.
- W2967424934 hasAuthorship W2967424934A5027477467 @default.
- W2967424934 hasAuthorship W2967424934A5030033407 @default.
- W2967424934 hasAuthorship W2967424934A5070068995 @default.
- W2967424934 hasBestOaLocation W29674249342 @default.
- W2967424934 hasConcept C11413529 @default.
- W2967424934 hasConcept C121332964 @default.
- W2967424934 hasConcept C126255220 @default.
- W2967424934 hasConcept C13280743 @default.
- W2967424934 hasConcept C137836250 @default.
- W2967424934 hasConcept C154945302 @default.
- W2967424934 hasConcept C159149176 @default.
- W2967424934 hasConcept C185798385 @default.
- W2967424934 hasConcept C205649164 @default.
- W2967424934 hasConcept C2778755073 @default.
- W2967424934 hasConcept C33923547 @default.
- W2967424934 hasConcept C41008148 @default.
- W2967424934 hasConcept C48044578 @default.
- W2967424934 hasConcept C62520636 @default.
- W2967424934 hasConcept C77088390 @default.
- W2967424934 hasConceptScore W2967424934C11413529 @default.
- W2967424934 hasConceptScore W2967424934C121332964 @default.
- W2967424934 hasConceptScore W2967424934C126255220 @default.
- W2967424934 hasConceptScore W2967424934C13280743 @default.
- W2967424934 hasConceptScore W2967424934C137836250 @default.
- W2967424934 hasConceptScore W2967424934C154945302 @default.
- W2967424934 hasConceptScore W2967424934C159149176 @default.
- W2967424934 hasConceptScore W2967424934C185798385 @default.
- W2967424934 hasConceptScore W2967424934C205649164 @default.
- W2967424934 hasConceptScore W2967424934C2778755073 @default.
- W2967424934 hasConceptScore W2967424934C33923547 @default.
- W2967424934 hasConceptScore W2967424934C41008148 @default.
- W2967424934 hasConceptScore W2967424934C48044578 @default.
- W2967424934 hasConceptScore W2967424934C62520636 @default.
- W2967424934 hasConceptScore W2967424934C77088390 @default.
- W2967424934 hasLocation W29674249341 @default.
- W2967424934 hasLocation W29674249342 @default.
- W2967424934 hasOpenAccess W2967424934 @default.
- W2967424934 hasPrimaryLocation W29674249341 @default.
- W2967424934 hasRelatedWork W2022485595 @default.
- W2967424934 hasRelatedWork W2028665553 @default.
- W2967424934 hasRelatedWork W2086519370 @default.
- W2967424934 hasRelatedWork W2087343574 @default.
- W2967424934 hasRelatedWork W2130974462 @default.
- W2967424934 hasRelatedWork W2378211422 @default.
- W2967424934 hasRelatedWork W2535915176 @default.
- W2967424934 hasRelatedWork W2726551571 @default.
- W2967424934 hasRelatedWork W4321353415 @default.
- W2967424934 hasRelatedWork W972276598 @default.
- W2967424934 isParatext "false" @default.
- W2967424934 isRetracted "false" @default.
- W2967424934 magId "2967424934" @default.
- W2967424934 workType "article" @default.