Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967432557> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2967432557 endingPage "287" @default.
- W2967432557 startingPage "282" @default.
- W2967432557 abstract "Licensing services is one of the forms of public services that important in supporting increased investment in Indonesia and is currently carried out by the Investment and Licensing Services Department. The problems that occur in general are the length of time to process licenses and one of the contributing factors is the limited number of licensing officers. Licensing data is a time series data which have monthly observation. The Artificial Neural Network (ANN) and Support Vector Machine (SVR) is used as machine learning techniques to predict licensing pattern based on time series data. Of the data used dataset 1 and dataset 2, the sharing of training data and testing data is equal to 70% and 30% with consideration that training data must be more than testing data. The result of the study showed for Dataset 1, the ANN-Multilayer Perceptron have a better performance than Support Vector Regression (SVR) with MSE, MAE and RMSE values is 251.09, 11.45, and 15.84. Then for dataset 2, SVR-Linear has better performance than MLP with values of MSE, MAE and RMSE of 1839.93, 32.80, and 42.89. The dataset used to predict the number of permissions is dataset 2. The study also used the Simple Linear Regression (SLR) method to see the causal relationship between the number of licenses issued and licensing service officers. The result is that the relationship between the number of licenses issued and the number of service officers is less significant because there are other factors that affect the number of licenses.
" @default.
- W2967432557 created "2019-08-22" @default.
- W2967432557 creator A5036133430 @default.
- W2967432557 creator A5036188698 @default.
- W2967432557 creator A5091112716 @default.
- W2967432557 date "2019-08-09" @default.
- W2967432557 modified "2023-10-17" @default.
- W2967432557 title "Analisis Pola Prediksi Data Time Series menggunakan Support Vector Regression, Multilayer Perceptron, dan Regresi Linear Sederhana" @default.
- W2967432557 doi "https://doi.org/10.29207/resti.v3i2.1013" @default.
- W2967432557 hasPublicationYear "2019" @default.
- W2967432557 type Work @default.
- W2967432557 sameAs 2967432557 @default.
- W2967432557 citedByCount "2" @default.
- W2967432557 countsByYear W29674325572020 @default.
- W2967432557 countsByYear W29674325572023 @default.
- W2967432557 crossrefType "journal-article" @default.
- W2967432557 hasAuthorship W2967432557A5036133430 @default.
- W2967432557 hasAuthorship W2967432557A5036188698 @default.
- W2967432557 hasAuthorship W2967432557A5091112716 @default.
- W2967432557 hasBestOaLocation W29674325571 @default.
- W2967432557 hasConcept C105795698 @default.
- W2967432557 hasConcept C119857082 @default.
- W2967432557 hasConcept C12267149 @default.
- W2967432557 hasConcept C124101348 @default.
- W2967432557 hasConcept C139945424 @default.
- W2967432557 hasConcept C143724316 @default.
- W2967432557 hasConcept C144133560 @default.
- W2967432557 hasConcept C151406439 @default.
- W2967432557 hasConcept C151730666 @default.
- W2967432557 hasConcept C152877465 @default.
- W2967432557 hasConcept C154945302 @default.
- W2967432557 hasConcept C162853370 @default.
- W2967432557 hasConcept C17744445 @default.
- W2967432557 hasConcept C179717631 @default.
- W2967432557 hasConcept C199539241 @default.
- W2967432557 hasConcept C27548731 @default.
- W2967432557 hasConcept C2780378061 @default.
- W2967432557 hasConcept C33923547 @default.
- W2967432557 hasConcept C41008148 @default.
- W2967432557 hasConcept C48921125 @default.
- W2967432557 hasConcept C50644808 @default.
- W2967432557 hasConcept C60908668 @default.
- W2967432557 hasConcept C86803240 @default.
- W2967432557 hasConcept C94625758 @default.
- W2967432557 hasConceptScore W2967432557C105795698 @default.
- W2967432557 hasConceptScore W2967432557C119857082 @default.
- W2967432557 hasConceptScore W2967432557C12267149 @default.
- W2967432557 hasConceptScore W2967432557C124101348 @default.
- W2967432557 hasConceptScore W2967432557C139945424 @default.
- W2967432557 hasConceptScore W2967432557C143724316 @default.
- W2967432557 hasConceptScore W2967432557C144133560 @default.
- W2967432557 hasConceptScore W2967432557C151406439 @default.
- W2967432557 hasConceptScore W2967432557C151730666 @default.
- W2967432557 hasConceptScore W2967432557C152877465 @default.
- W2967432557 hasConceptScore W2967432557C154945302 @default.
- W2967432557 hasConceptScore W2967432557C162853370 @default.
- W2967432557 hasConceptScore W2967432557C17744445 @default.
- W2967432557 hasConceptScore W2967432557C179717631 @default.
- W2967432557 hasConceptScore W2967432557C199539241 @default.
- W2967432557 hasConceptScore W2967432557C27548731 @default.
- W2967432557 hasConceptScore W2967432557C2780378061 @default.
- W2967432557 hasConceptScore W2967432557C33923547 @default.
- W2967432557 hasConceptScore W2967432557C41008148 @default.
- W2967432557 hasConceptScore W2967432557C48921125 @default.
- W2967432557 hasConceptScore W2967432557C50644808 @default.
- W2967432557 hasConceptScore W2967432557C60908668 @default.
- W2967432557 hasConceptScore W2967432557C86803240 @default.
- W2967432557 hasConceptScore W2967432557C94625758 @default.
- W2967432557 hasIssue "2" @default.
- W2967432557 hasLocation W29674325571 @default.
- W2967432557 hasLocation W29674325572 @default.
- W2967432557 hasOpenAccess W2967432557 @default.
- W2967432557 hasPrimaryLocation W29674325571 @default.
- W2967432557 hasRelatedWork W2172064003 @default.
- W2967432557 hasRelatedWork W2749461815 @default.
- W2967432557 hasRelatedWork W2797282764 @default.
- W2967432557 hasRelatedWork W2890929759 @default.
- W2967432557 hasRelatedWork W2943894916 @default.
- W2967432557 hasRelatedWork W2978376138 @default.
- W2967432557 hasRelatedWork W2979979539 @default.
- W2967432557 hasRelatedWork W4280611221 @default.
- W2967432557 hasRelatedWork W4322009192 @default.
- W2967432557 hasRelatedWork W4361795583 @default.
- W2967432557 hasVolume "3" @default.
- W2967432557 isParatext "false" @default.
- W2967432557 isRetracted "false" @default.
- W2967432557 magId "2967432557" @default.
- W2967432557 workType "article" @default.