Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967464561> ?p ?o ?g. }
- W2967464561 endingPage "115970" @default.
- W2967464561 startingPage "115970" @default.
- W2967464561 abstract "In this study an exhaust gas recirculation system was developed for a small single cylinder 4-stroke engine. Then the mathematical models to correlate responses as the engine emissions and performance characteristics to the factors, include engine load, engine speed, EGR rate and biodiesel fuel percent, were developed. Finally, by using the developed models and NSGA-II (Non-dominated Sorting Genetic Algorithm II) method, the factors were optimized. The highest decrease in NOx emissions while using the biodiesel and EGR is 63.76% with B10 fuel blend (10% biodiesel fuel and 90% diesel fuel blend by volume) and 30% EGR rate. The highest reduction in HC emission levels while using EGR and biodiesel simultaneously, has been 54.05%. The adjusted R2 of the proposed model for the CO, HC, NOx, Power, BSFC and smoke were 0.94, 0.91, 0.88, 0.95, 0.89 and 0.94, respectively. Results of the optimization of the engine factors with NSGA-II method has been satisfactory and the pareto front for different test conditions was proposed. The outcomes of the study revealed that the optimization should be taken into account in the development of the new policy for using of the biofuel in the internal combustion engines." @default.
- W2967464561 created "2019-08-22" @default.
- W2967464561 creator A5004682860 @default.
- W2967464561 creator A5026003235 @default.
- W2967464561 creator A5041408531 @default.
- W2967464561 creator A5042509969 @default.
- W2967464561 creator A5069146914 @default.
- W2967464561 date "2019-11-01" @default.
- W2967464561 modified "2023-10-18" @default.
- W2967464561 title "Multi-objective NSGA-II optimization of a compression ignition engine parameters using biodiesel fuel and exhaust gas recirculation" @default.
- W2967464561 cites W1043476621 @default.
- W2967464561 cites W1071069057 @default.
- W2967464561 cites W1112013983 @default.
- W2967464561 cites W1953729848 @default.
- W2967464561 cites W1963656272 @default.
- W2967464561 cites W1965211554 @default.
- W2967464561 cites W1989216983 @default.
- W2967464561 cites W1998647260 @default.
- W2967464561 cites W2004377183 @default.
- W2967464561 cites W2011314606 @default.
- W2967464561 cites W2015516543 @default.
- W2967464561 cites W2016888921 @default.
- W2967464561 cites W2017648934 @default.
- W2967464561 cites W2018713617 @default.
- W2967464561 cites W2022174985 @default.
- W2967464561 cites W2026544639 @default.
- W2967464561 cites W2034330903 @default.
- W2967464561 cites W2037468837 @default.
- W2967464561 cites W2039211740 @default.
- W2967464561 cites W2042251869 @default.
- W2967464561 cites W2044653632 @default.
- W2967464561 cites W2056371628 @default.
- W2967464561 cites W2057673186 @default.
- W2967464561 cites W2058096583 @default.
- W2967464561 cites W2066880313 @default.
- W2967464561 cites W2079645323 @default.
- W2967464561 cites W2080919940 @default.
- W2967464561 cites W2089422018 @default.
- W2967464561 cites W2092957583 @default.
- W2967464561 cites W2095860903 @default.
- W2967464561 cites W2126105956 @default.
- W2967464561 cites W2137336041 @default.
- W2967464561 cites W2165512128 @default.
- W2967464561 cites W2171099713 @default.
- W2967464561 cites W2198020961 @default.
- W2967464561 cites W2220971892 @default.
- W2967464561 cites W2229851160 @default.
- W2967464561 cites W2235878471 @default.
- W2967464561 cites W2246747427 @default.
- W2967464561 cites W2287685282 @default.
- W2967464561 cites W2290545128 @default.
- W2967464561 cites W2300045829 @default.
- W2967464561 cites W2303740556 @default.
- W2967464561 cites W2896129166 @default.
- W2967464561 cites W2902122131 @default.
- W2967464561 cites W4236794994 @default.
- W2967464561 cites W438490154 @default.
- W2967464561 doi "https://doi.org/10.1016/j.energy.2019.115970" @default.
- W2967464561 hasPublicationYear "2019" @default.
- W2967464561 type Work @default.
- W2967464561 sameAs 2967464561 @default.
- W2967464561 citedByCount "43" @default.
- W2967464561 countsByYear W29674645612019 @default.
- W2967464561 countsByYear W29674645612020 @default.
- W2967464561 countsByYear W29674645612021 @default.
- W2967464561 countsByYear W29674645612022 @default.
- W2967464561 countsByYear W29674645612023 @default.
- W2967464561 crossrefType "journal-article" @default.
- W2967464561 hasAuthorship W2967464561A5004682860 @default.
- W2967464561 hasAuthorship W2967464561A5026003235 @default.
- W2967464561 hasAuthorship W2967464561A5041408531 @default.
- W2967464561 hasAuthorship W2967464561A5042509969 @default.
- W2967464561 hasAuthorship W2967464561A5069146914 @default.
- W2967464561 hasConcept C103206924 @default.
- W2967464561 hasConcept C105923489 @default.
- W2967464561 hasConcept C127413603 @default.
- W2967464561 hasConcept C138171918 @default.
- W2967464561 hasConcept C146978453 @default.
- W2967464561 hasConcept C159063594 @default.
- W2967464561 hasConcept C161790260 @default.
- W2967464561 hasConcept C171146098 @default.
- W2967464561 hasConcept C178790620 @default.
- W2967464561 hasConcept C185592680 @default.
- W2967464561 hasConcept C203032635 @default.
- W2967464561 hasConcept C2779139147 @default.
- W2967464561 hasConcept C2780804531 @default.
- W2967464561 hasConcept C39432304 @default.
- W2967464561 hasConcept C511840579 @default.
- W2967464561 hasConcept C52896960 @default.
- W2967464561 hasConcept C53991642 @default.
- W2967464561 hasConcept C548081761 @default.
- W2967464561 hasConcept C55493867 @default.
- W2967464561 hasConcept C73081478 @default.
- W2967464561 hasConceptScore W2967464561C103206924 @default.
- W2967464561 hasConceptScore W2967464561C105923489 @default.
- W2967464561 hasConceptScore W2967464561C127413603 @default.
- W2967464561 hasConceptScore W2967464561C138171918 @default.
- W2967464561 hasConceptScore W2967464561C146978453 @default.