Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967493676> ?p ?o ?g. }
- W2967493676 abstract "We studied how recurrent neural nets (RNN), which utilize delayed feedback weights, could model the encoding of time at the supra-second level. Recurrent “Go” and “No-Go” neural processing units with different dynamics were identified whose outputs were summated to generate a pulse that drives a fixed integrator unit. This system was used to model empirical data from rodents performing in an instrumental “peak interval timing” task for Tone and Flash inputs. Reward availability was signaled after different times from stimulus onset during training. Rodent performance was assessed on non-rewarded trials, following training, with each stimulus tested individually and simultaneously in a stimulus compound. The weights in the Go/No-Go network were trained using experimentally obtained mean distribution of bar press rates across an 80 s period. The rewards for tone and flash were given 5 s and 30 s from stimulus onset, respectively. Different Go/No-Go systems were used for each stimulus, but the weighted output of each fed into a final common recurrent integrator unit, whose weights were unmodifiable. The RNN was implemented and trained in Matlab using the data from non-rewarded trials. The neural net output accurately fit the temporal distribution of tone and flash-initiated bar press data. A “Temporal Averaging” effect was obtained when the flash and tone stimuli were combined. Average auto-correlation functions for the tone, flash and compound responses and cross-correlations between their pairwise combinations confirmed that the peaks and variances of the three response functions significantly differed, with the compound being intermediate between tone and flash but somewhat more similar to flash than tone. Combining tone and flash responses were not superposed as in a linear system. Rather, implementation of nonlinear “saliency functions” that limited the output signal of each stimulus to the final integrator when the other was co-present better fit the data. The model suggests that the brain encodes timing through connection weights of a dynamic RNN. Thus, event timing is coded similar to the way other sensory-motor systems, such as the vestibulo-ocular and optokinetic systems combine sensory inputs from the vestibular and visual systems to generate the temporal aspects of compensatory eye movements." @default.
- W2967493676 created "2019-08-22" @default.
- W2967493676 creator A5019014873 @default.
- W2967493676 creator A5024391265 @default.
- W2967493676 creator A5063333500 @default.
- W2967493676 date "2019-08-28" @default.
- W2967493676 modified "2023-10-16" @default.
- W2967493676 title "Modeling Interval Timing by Recurrent Neural Nets" @default.
- W2967493676 cites W120521674 @default.
- W2967493676 cites W149700510 @default.
- W2967493676 cites W1518975554 @default.
- W2967493676 cites W1914540968 @default.
- W2967493676 cites W1965121347 @default.
- W2967493676 cites W1968605841 @default.
- W2967493676 cites W1970557265 @default.
- W2967493676 cites W1977420883 @default.
- W2967493676 cites W1977646756 @default.
- W2967493676 cites W1993122472 @default.
- W2967493676 cites W1993146792 @default.
- W2967493676 cites W1999743873 @default.
- W2967493676 cites W2004268151 @default.
- W2967493676 cites W2009181467 @default.
- W2967493676 cites W2009240866 @default.
- W2967493676 cites W2010356999 @default.
- W2967493676 cites W2012730231 @default.
- W2967493676 cites W2015353573 @default.
- W2967493676 cites W2016002673 @default.
- W2967493676 cites W2017122328 @default.
- W2967493676 cites W2019136279 @default.
- W2967493676 cites W2028671504 @default.
- W2967493676 cites W2031248411 @default.
- W2967493676 cites W2032130729 @default.
- W2967493676 cites W2038156236 @default.
- W2967493676 cites W2045363434 @default.
- W2967493676 cites W2047844269 @default.
- W2967493676 cites W2052296894 @default.
- W2967493676 cites W2057256548 @default.
- W2967493676 cites W2058798611 @default.
- W2967493676 cites W2068128809 @default.
- W2967493676 cites W2076113015 @default.
- W2967493676 cites W2081338479 @default.
- W2967493676 cites W2084129588 @default.
- W2967493676 cites W2093177513 @default.
- W2967493676 cites W2093427091 @default.
- W2967493676 cites W2101768168 @default.
- W2967493676 cites W2102132106 @default.
- W2967493676 cites W2115119068 @default.
- W2967493676 cites W2119092010 @default.
- W2967493676 cites W2124335201 @default.
- W2967493676 cites W2131176179 @default.
- W2967493676 cites W2138717453 @default.
- W2967493676 cites W2146146093 @default.
- W2967493676 cites W2148962176 @default.
- W2967493676 cites W2164146725 @default.
- W2967493676 cites W2164789388 @default.
- W2967493676 cites W2171289384 @default.
- W2967493676 cites W2188197963 @default.
- W2967493676 cites W2208901704 @default.
- W2967493676 cites W2265975067 @default.
- W2967493676 cites W2270336348 @default.
- W2967493676 cites W2316702897 @default.
- W2967493676 cites W2404028801 @default.
- W2967493676 cites W2407070982 @default.
- W2967493676 cites W2415914040 @default.
- W2967493676 cites W2524194009 @default.
- W2967493676 cites W2531126937 @default.
- W2967493676 cites W2770126130 @default.
- W2967493676 cites W4231202355 @default.
- W2967493676 cites W4241364742 @default.
- W2967493676 cites W4244719935 @default.
- W2967493676 cites W4256166023 @default.
- W2967493676 cites W655026120 @default.
- W2967493676 doi "https://doi.org/10.3389/fnint.2019.00046" @default.
- W2967493676 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6724642" @default.
- W2967493676 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31555104" @default.
- W2967493676 hasPublicationYear "2019" @default.
- W2967493676 type Work @default.
- W2967493676 sameAs 2967493676 @default.
- W2967493676 citedByCount "7" @default.
- W2967493676 countsByYear W29674936762020 @default.
- W2967493676 countsByYear W29674936762021 @default.
- W2967493676 countsByYear W29674936762022 @default.
- W2967493676 crossrefType "journal-article" @default.
- W2967493676 hasAuthorship W2967493676A5019014873 @default.
- W2967493676 hasAuthorship W2967493676A5024391265 @default.
- W2967493676 hasAuthorship W2967493676A5063333500 @default.
- W2967493676 hasBestOaLocation W29674936761 @default.
- W2967493676 hasConcept C117220453 @default.
- W2967493676 hasConcept C147168706 @default.
- W2967493676 hasConcept C153180895 @default.
- W2967493676 hasConcept C154945302 @default.
- W2967493676 hasConcept C15744967 @default.
- W2967493676 hasConcept C180747234 @default.
- W2967493676 hasConcept C184898388 @default.
- W2967493676 hasConcept C2524010 @default.
- W2967493676 hasConcept C2776257435 @default.
- W2967493676 hasConcept C2779918689 @default.
- W2967493676 hasConcept C28490314 @default.
- W2967493676 hasConcept C31258907 @default.
- W2967493676 hasConcept C33923547 @default.