Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967514127> ?p ?o ?g. }
- W2967514127 endingPage "064113" @default.
- W2967514127 startingPage "064113" @default.
- W2967514127 abstract "We examine a simple upper bound to the gradient-based kinetic energy density (KED) of noninteracting electrons in an external potential: t(r) ≤ [μ−v(r)]n(r)+14∇2n(r), where t(r) is the gradient-based (non-negative) KED, μ is the Fermi energy, v(r) is the external potential, and n(r) is the electron density. The bound emerges naturally from a well-known expression for t(r), leading to an intuitive physical interpretation. For example, t(r) approaches the upper bound in regions where the electron density consists mainly of contributions from states with energies close to the Fermi energy. This upper bound complements the orbital-free lower bound provided by the gradient form of the von Weizsäcker (vW) KED, which is also non-negative. Both bounds yield t(r) exactly for single-orbital systems, and accordingly, they merge in single-orbital regions of more general systems. We demonstrate the universality of the two bounds over a wide range of test systems, including model potentials, atoms, diatomic molecules, and pseudopotential approximations of crystals. We also show that the exact t(r) frequently exceeds the sum of the vW and Thomas-Fermi KEDs, rendering that sum unsuitable as a strict upper bound to the gradient-based KED." @default.
- W2967514127 created "2019-08-22" @default.
- W2967514127 creator A5084074272 @default.
- W2967514127 creator A5087328377 @default.
- W2967514127 creator A5090200106 @default.
- W2967514127 date "2019-08-14" @default.
- W2967514127 modified "2023-09-27" @default.
- W2967514127 title "Upper bound to the gradient-based kinetic energy density of noninteracting electrons in an external potential" @default.
- W2967514127 cites W1489171350 @default.
- W2967514127 cites W1620111872 @default.
- W2967514127 cites W177172485 @default.
- W2967514127 cites W1963583114 @default.
- W2967514127 cites W1969560561 @default.
- W2967514127 cites W1969767254 @default.
- W2967514127 cites W1976561181 @default.
- W2967514127 cites W1977711689 @default.
- W2967514127 cites W1981368803 @default.
- W2967514127 cites W1986892587 @default.
- W2967514127 cites W1989335167 @default.
- W2967514127 cites W1990366521 @default.
- W2967514127 cites W1992109632 @default.
- W2967514127 cites W1996210969 @default.
- W2967514127 cites W2013349767 @default.
- W2967514127 cites W2018363953 @default.
- W2967514127 cites W2030976617 @default.
- W2967514127 cites W2033618515 @default.
- W2967514127 cites W2040782337 @default.
- W2967514127 cites W2046592609 @default.
- W2967514127 cites W2046668457 @default.
- W2967514127 cites W2046940139 @default.
- W2967514127 cites W2049079467 @default.
- W2967514127 cites W2060046850 @default.
- W2967514127 cites W2077295152 @default.
- W2967514127 cites W2078202750 @default.
- W2967514127 cites W2088520191 @default.
- W2967514127 cites W2088819993 @default.
- W2967514127 cites W2092175131 @default.
- W2967514127 cites W2101356519 @default.
- W2967514127 cites W2111260802 @default.
- W2967514127 cites W2118852629 @default.
- W2967514127 cites W2146747898 @default.
- W2967514127 cites W2230728100 @default.
- W2967514127 cites W2325075984 @default.
- W2967514127 cites W2341710530 @default.
- W2967514127 cites W2341951168 @default.
- W2967514127 cites W2561216668 @default.
- W2967514127 cites W2587661679 @default.
- W2967514127 cites W2765504158 @default.
- W2967514127 cites W2765823737 @default.
- W2967514127 cites W2808425139 @default.
- W2967514127 cites W2883151771 @default.
- W2967514127 cites W2884770561 @default.
- W2967514127 cites W2939153492 @default.
- W2967514127 cites W2940346397 @default.
- W2967514127 cites W2962912331 @default.
- W2967514127 cites W2998313242 @default.
- W2967514127 cites W3103887024 @default.
- W2967514127 cites W4238885544 @default.
- W2967514127 cites W4241854618 @default.
- W2967514127 cites W4300816443 @default.
- W2967514127 cites W1982045968 @default.
- W2967514127 doi "https://doi.org/10.1063/1.5108896" @default.
- W2967514127 hasPublicationYear "2019" @default.
- W2967514127 type Work @default.
- W2967514127 sameAs 2967514127 @default.
- W2967514127 citedByCount "3" @default.
- W2967514127 countsByYear W29675141272020 @default.
- W2967514127 countsByYear W29675141272021 @default.
- W2967514127 countsByYear W29675141272023 @default.
- W2967514127 crossrefType "journal-article" @default.
- W2967514127 hasAuthorship W2967514127A5084074272 @default.
- W2967514127 hasAuthorship W2967514127A5087328377 @default.
- W2967514127 hasAuthorship W2967514127A5090200106 @default.
- W2967514127 hasBestOaLocation W29675141271 @default.
- W2967514127 hasConcept C111806078 @default.
- W2967514127 hasConcept C121332964 @default.
- W2967514127 hasConcept C134306372 @default.
- W2967514127 hasConcept C135889238 @default.
- W2967514127 hasConcept C147120987 @default.
- W2967514127 hasConcept C174084160 @default.
- W2967514127 hasConcept C183992945 @default.
- W2967514127 hasConcept C184779094 @default.
- W2967514127 hasConcept C189394030 @default.
- W2967514127 hasConcept C26057338 @default.
- W2967514127 hasConcept C32909587 @default.
- W2967514127 hasConcept C33923547 @default.
- W2967514127 hasConcept C62520636 @default.
- W2967514127 hasConcept C77553402 @default.
- W2967514127 hasConcept C85867844 @default.
- W2967514127 hasConceptScore W2967514127C111806078 @default.
- W2967514127 hasConceptScore W2967514127C121332964 @default.
- W2967514127 hasConceptScore W2967514127C134306372 @default.
- W2967514127 hasConceptScore W2967514127C135889238 @default.
- W2967514127 hasConceptScore W2967514127C147120987 @default.
- W2967514127 hasConceptScore W2967514127C174084160 @default.
- W2967514127 hasConceptScore W2967514127C183992945 @default.
- W2967514127 hasConceptScore W2967514127C184779094 @default.
- W2967514127 hasConceptScore W2967514127C189394030 @default.