Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967569668> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2967569668 abstract "In this paper, we designed a hybrid of swarm intelligence algorithms to diagnose hepatitis, breast tissue, and dermatology conditions in patients with such infection. The effectiveness of hybrid swarm intelligent algorithms was studied since no single algorithm is effective in solving all types of problems. In this study, feed forward and Elman recurrent neural network (ERN) with swarm intelligent algorithms is used for the classification of the mentioned diseases. The capabilities of six (6) global optimization learning algorithms were studied and their performances in training as well as testing were compared. These algorithms include: hybrid of Cuckoo Search algorithm and Levenberg-Marquardt (LM) (CSLM), Cuckoo Search algorithm (CS) and backpropagation (BP) (CSBP), CS and ERN (CSERN), Artificial Bee Colony (ABC) and LM (ABCLM), ABC and BP (ABCBP), Genetic Algorithm (GA) and BP (GANN). Simulation comparative results indicated that the classification accuracy and run time of the CSLM outperform the CSERN, GANN, ABCBP, ABCLM, and CSBP in the breast tissue dataset. On the other hand, the CSERN performs better than the CSLM, GANN, ABCBP, ABCLM, and CSBP in both the dermatology and hepatitis datasets. The results obtained could allow researchers to quickly identify the most suitable algorithm for application in a particular medical dataset." @default.
- W2967569668 created "2019-08-22" @default.
- W2967569668 creator A5005588499 @default.
- W2967569668 creator A5013621949 @default.
- W2967569668 creator A5031062238 @default.
- W2967569668 creator A5034327992 @default.
- W2967569668 creator A5074499470 @default.
- W2967569668 creator A5080848764 @default.
- W2967569668 creator A5090196764 @default.
- W2967569668 date "2019-01-01" @default.
- W2967569668 modified "2023-10-09" @default.
- W2967569668 title "Hybrid of Swarm Intelligent Algorithms in Medical Applications" @default.
- W2967569668 cites W1483461803 @default.
- W2967569668 cites W1489281615 @default.
- W2967569668 cites W1519086888 @default.
- W2967569668 cites W1529965533 @default.
- W2967569668 cites W1586335931 @default.
- W2967569668 cites W1598382868 @default.
- W2967569668 cites W1970204203 @default.
- W2967569668 cites W2039911195 @default.
- W2967569668 cites W2040044581 @default.
- W2967569668 cites W2046624437 @default.
- W2967569668 cites W2069767684 @default.
- W2967569668 cites W2109510860 @default.
- W2967569668 cites W2110485445 @default.
- W2967569668 cites W2113105395 @default.
- W2967569668 cites W266504756 @default.
- W2967569668 doi "https://doi.org/10.1007/978-981-13-1799-6_63" @default.
- W2967569668 hasPublicationYear "2019" @default.
- W2967569668 type Work @default.
- W2967569668 sameAs 2967569668 @default.
- W2967569668 citedByCount "0" @default.
- W2967569668 crossrefType "book-chapter" @default.
- W2967569668 hasAuthorship W2967569668A5005588499 @default.
- W2967569668 hasAuthorship W2967569668A5013621949 @default.
- W2967569668 hasAuthorship W2967569668A5031062238 @default.
- W2967569668 hasAuthorship W2967569668A5034327992 @default.
- W2967569668 hasAuthorship W2967569668A5074499470 @default.
- W2967569668 hasAuthorship W2967569668A5080848764 @default.
- W2967569668 hasAuthorship W2967569668A5090196764 @default.
- W2967569668 hasBestOaLocation W29675696682 @default.
- W2967569668 hasConcept C11413529 @default.
- W2967569668 hasConcept C117241572 @default.
- W2967569668 hasConcept C119487961 @default.
- W2967569668 hasConcept C119857082 @default.
- W2967569668 hasConcept C154945302 @default.
- W2967569668 hasConcept C155032097 @default.
- W2967569668 hasConcept C176783269 @default.
- W2967569668 hasConcept C181335050 @default.
- W2967569668 hasConcept C41008148 @default.
- W2967569668 hasConcept C44616089 @default.
- W2967569668 hasConcept C49937458 @default.
- W2967569668 hasConcept C50644808 @default.
- W2967569668 hasConcept C62469222 @default.
- W2967569668 hasConcept C85617194 @default.
- W2967569668 hasConcept C8880873 @default.
- W2967569668 hasConceptScore W2967569668C11413529 @default.
- W2967569668 hasConceptScore W2967569668C117241572 @default.
- W2967569668 hasConceptScore W2967569668C119487961 @default.
- W2967569668 hasConceptScore W2967569668C119857082 @default.
- W2967569668 hasConceptScore W2967569668C154945302 @default.
- W2967569668 hasConceptScore W2967569668C155032097 @default.
- W2967569668 hasConceptScore W2967569668C176783269 @default.
- W2967569668 hasConceptScore W2967569668C181335050 @default.
- W2967569668 hasConceptScore W2967569668C41008148 @default.
- W2967569668 hasConceptScore W2967569668C44616089 @default.
- W2967569668 hasConceptScore W2967569668C49937458 @default.
- W2967569668 hasConceptScore W2967569668C50644808 @default.
- W2967569668 hasConceptScore W2967569668C62469222 @default.
- W2967569668 hasConceptScore W2967569668C85617194 @default.
- W2967569668 hasConceptScore W2967569668C8880873 @default.
- W2967569668 hasLocation W29675696681 @default.
- W2967569668 hasLocation W29675696682 @default.
- W2967569668 hasOpenAccess W2967569668 @default.
- W2967569668 hasPrimaryLocation W29675696681 @default.
- W2967569668 hasRelatedWork W1710647122 @default.
- W2967569668 hasRelatedWork W2043839346 @default.
- W2967569668 hasRelatedWork W2049314427 @default.
- W2967569668 hasRelatedWork W2124181104 @default.
- W2967569668 hasRelatedWork W2130372754 @default.
- W2967569668 hasRelatedWork W2348584318 @default.
- W2967569668 hasRelatedWork W2569560188 @default.
- W2967569668 hasRelatedWork W2967569668 @default.
- W2967569668 hasRelatedWork W759587468 @default.
- W2967569668 hasRelatedWork W2184855718 @default.
- W2967569668 isParatext "false" @default.
- W2967569668 isRetracted "false" @default.
- W2967569668 magId "2967569668" @default.
- W2967569668 workType "book-chapter" @default.