Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967575950> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2967575950 endingPage "209" @default.
- W2967575950 startingPage "203" @default.
- W2967575950 abstract "Meteorological data is the basis for climate prediction and various scientific research. It is very important to study and prediction meteorological data. At present, the prediction methods for meteorological data are mainly a single intelligent method or a single point time series method based on time series data, which ignoring the interaction between meteorological sites and multiple meteorological factors. In this paper, Meteorological space-time data is decomposed into high frequency component and low frequency component by Hilbert Huang Transform. The high frequency component is modeling and predicting by fractional calculus grey model. The low frequency component is modeling and predicting by multivariate space-time auto regression model. The model verification results show that compared with the existing time series prediction methods, this method can more fully explain the non-stationary and nonlinear dynamic process of multivariate meteorological space-time sequences." @default.
- W2967575950 created "2019-08-22" @default.
- W2967575950 creator A5006213286 @default.
- W2967575950 creator A5012278873 @default.
- W2967575950 creator A5025723266 @default.
- W2967575950 creator A5026715699 @default.
- W2967575950 creator A5047380208 @default.
- W2967575950 creator A5057800547 @default.
- W2967575950 creator A5072811137 @default.
- W2967575950 creator A5077399002 @default.
- W2967575950 date "2019-11-01" @default.
- W2967575950 modified "2023-10-05" @default.
- W2967575950 title "Meteorological sequence prediction based on multivariate space-time auto regression model and fractional calculus grey model" @default.
- W2967575950 cites W1969861235 @default.
- W2967575950 cites W1972183204 @default.
- W2967575950 cites W1979618585 @default.
- W2967575950 cites W2000835757 @default.
- W2967575950 cites W2068957560 @default.
- W2967575950 cites W2093711592 @default.
- W2967575950 cites W2170936586 @default.
- W2967575950 cites W2275831277 @default.
- W2967575950 cites W2334876861 @default.
- W2967575950 cites W2791596545 @default.
- W2967575950 cites W2915594101 @default.
- W2967575950 cites W2921350794 @default.
- W2967575950 cites W2922374161 @default.
- W2967575950 cites W2940248389 @default.
- W2967575950 cites W2945534377 @default.
- W2967575950 cites W2953869233 @default.
- W2967575950 doi "https://doi.org/10.1016/j.chaos.2019.07.056" @default.
- W2967575950 hasPublicationYear "2019" @default.
- W2967575950 type Work @default.
- W2967575950 sameAs 2967575950 @default.
- W2967575950 citedByCount "14" @default.
- W2967575950 countsByYear W29675759502019 @default.
- W2967575950 countsByYear W29675759502020 @default.
- W2967575950 countsByYear W29675759502021 @default.
- W2967575950 countsByYear W29675759502022 @default.
- W2967575950 countsByYear W29675759502023 @default.
- W2967575950 crossrefType "journal-article" @default.
- W2967575950 hasAuthorship W2967575950A5006213286 @default.
- W2967575950 hasAuthorship W2967575950A5012278873 @default.
- W2967575950 hasAuthorship W2967575950A5025723266 @default.
- W2967575950 hasAuthorship W2967575950A5026715699 @default.
- W2967575950 hasAuthorship W2967575950A5047380208 @default.
- W2967575950 hasAuthorship W2967575950A5057800547 @default.
- W2967575950 hasAuthorship W2967575950A5072811137 @default.
- W2967575950 hasAuthorship W2967575950A5077399002 @default.
- W2967575950 hasConcept C105795698 @default.
- W2967575950 hasConcept C121332964 @default.
- W2967575950 hasConcept C143724316 @default.
- W2967575950 hasConcept C151406439 @default.
- W2967575950 hasConcept C151730666 @default.
- W2967575950 hasConcept C161584116 @default.
- W2967575950 hasConcept C168167062 @default.
- W2967575950 hasConcept C2778112365 @default.
- W2967575950 hasConcept C28826006 @default.
- W2967575950 hasConcept C33923547 @default.
- W2967575950 hasConcept C41008148 @default.
- W2967575950 hasConcept C54355233 @default.
- W2967575950 hasConcept C86803240 @default.
- W2967575950 hasConcept C97355855 @default.
- W2967575950 hasConceptScore W2967575950C105795698 @default.
- W2967575950 hasConceptScore W2967575950C121332964 @default.
- W2967575950 hasConceptScore W2967575950C143724316 @default.
- W2967575950 hasConceptScore W2967575950C151406439 @default.
- W2967575950 hasConceptScore W2967575950C151730666 @default.
- W2967575950 hasConceptScore W2967575950C161584116 @default.
- W2967575950 hasConceptScore W2967575950C168167062 @default.
- W2967575950 hasConceptScore W2967575950C2778112365 @default.
- W2967575950 hasConceptScore W2967575950C28826006 @default.
- W2967575950 hasConceptScore W2967575950C33923547 @default.
- W2967575950 hasConceptScore W2967575950C41008148 @default.
- W2967575950 hasConceptScore W2967575950C54355233 @default.
- W2967575950 hasConceptScore W2967575950C86803240 @default.
- W2967575950 hasConceptScore W2967575950C97355855 @default.
- W2967575950 hasFunder F4320321001 @default.
- W2967575950 hasFunder F4320335855 @default.
- W2967575950 hasLocation W29675759501 @default.
- W2967575950 hasOpenAccess W2967575950 @default.
- W2967575950 hasPrimaryLocation W29675759501 @default.
- W2967575950 hasRelatedWork W189280425 @default.
- W2967575950 hasRelatedWork W1980905932 @default.
- W2967575950 hasRelatedWork W2061542064 @default.
- W2967575950 hasRelatedWork W2153291261 @default.
- W2967575950 hasRelatedWork W2267219236 @default.
- W2967575950 hasRelatedWork W2350758509 @default.
- W2967575950 hasRelatedWork W2375884488 @default.
- W2967575950 hasRelatedWork W2776931564 @default.
- W2967575950 hasRelatedWork W4285420330 @default.
- W2967575950 hasRelatedWork W4361011496 @default.
- W2967575950 hasVolume "128" @default.
- W2967575950 isParatext "false" @default.
- W2967575950 isRetracted "false" @default.
- W2967575950 magId "2967575950" @default.
- W2967575950 workType "article" @default.