Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967609188> ?p ?o ?g. }
- W2967609188 endingPage "106945" @default.
- W2967609188 startingPage "106945" @default.
- W2967609188 abstract "Computer-based diagnoses are a crucial study in the medical image analyzing and machine learning technologies. The cone beam computed tomography (CBCT) modality provides three-dimensional bone models to extract an interactive treatment plan at relatively low radiation dose and cost. For the first time in this study, the evaluation of alveolar bone density was performed by a 3-D deep convolutional neural network (CNN) at the CBCT images. The trabecular pattern of the bone was recognized and classified. This study aimed to present a methodology which was implementing 3D voxel-wise feature evaluation within a convolutional neural network. We presented a three-dimensional CNN method that evaluated the alveolar bone density from CBCT volumetric data which could efficiently capture the trabecular pattern. In clinical trials, 207 surgery target areas of 83 patients have been selected. Clinical parameters were measured and evaluated during the surgery and a 6-month follow-up. These parameters were used to database labeling and evaluate the performance of the proposed technique. Our method achieved the average precision score of 84.63% and 95.20% in the hexagonal prism and the cylindrical voxel shapes respectively. Furthermore, the alveolar bone classification was performed in 76 ms. In comparison to the state-of-art approaches, the efficiency of the suggested algorithm was proved. An automatic classification can improve the proficiency and certainty of the radiologic evaluation. The outcome of this research may help the dentists in the implant treatment from diagnosis to surgery." @default.
- W2967609188 created "2019-08-22" @default.
- W2967609188 creator A5036552097 @default.
- W2967609188 creator A5074423950 @default.
- W2967609188 date "2019-12-01" @default.
- W2967609188 modified "2023-10-17" @default.
- W2967609188 title "Classification of alveolar bone density using 3-D deep convolutional neural network in the cone-beam CT images: A 6-month clinical study" @default.
- W2967609188 cites W1503378108 @default.
- W2967609188 cites W1982239608 @default.
- W2967609188 cites W1989132665 @default.
- W2967609188 cites W2008723480 @default.
- W2967609188 cites W2031347244 @default.
- W2967609188 cites W2032081375 @default.
- W2967609188 cites W2051013248 @default.
- W2967609188 cites W2068373666 @default.
- W2967609188 cites W2072089637 @default.
- W2967609188 cites W2077932608 @default.
- W2967609188 cites W2097693440 @default.
- W2967609188 cites W2099587162 @default.
- W2967609188 cites W2100962511 @default.
- W2967609188 cites W2126187248 @default.
- W2967609188 cites W2129076170 @default.
- W2967609188 cites W2143687409 @default.
- W2967609188 cites W2147346800 @default.
- W2967609188 cites W2147800946 @default.
- W2967609188 cites W2150177901 @default.
- W2967609188 cites W2253429366 @default.
- W2967609188 cites W2282915343 @default.
- W2967609188 cites W2343172899 @default.
- W2967609188 cites W2345010043 @default.
- W2967609188 cites W2475476940 @default.
- W2967609188 cites W2563709416 @default.
- W2967609188 cites W2573738658 @default.
- W2967609188 cites W2575868016 @default.
- W2967609188 cites W2585500269 @default.
- W2967609188 cites W2590089154 @default.
- W2967609188 cites W2617992501 @default.
- W2967609188 cites W2715819132 @default.
- W2967609188 cites W2755522004 @default.
- W2967609188 cites W2963881378 @default.
- W2967609188 cites W4233109346 @default.
- W2967609188 cites W2285632190 @default.
- W2967609188 doi "https://doi.org/10.1016/j.measurement.2019.106945" @default.
- W2967609188 hasPublicationYear "2019" @default.
- W2967609188 type Work @default.
- W2967609188 sameAs 2967609188 @default.
- W2967609188 citedByCount "11" @default.
- W2967609188 countsByYear W29676091882020 @default.
- W2967609188 countsByYear W29676091882021 @default.
- W2967609188 countsByYear W29676091882022 @default.
- W2967609188 countsByYear W29676091882023 @default.
- W2967609188 crossrefType "journal-article" @default.
- W2967609188 hasAuthorship W2967609188A5036552097 @default.
- W2967609188 hasAuthorship W2967609188A5074423950 @default.
- W2967609188 hasConcept C108583219 @default.
- W2967609188 hasConcept C126838900 @default.
- W2967609188 hasConcept C138885662 @default.
- W2967609188 hasConcept C153180895 @default.
- W2967609188 hasConcept C154945302 @default.
- W2967609188 hasConcept C201645570 @default.
- W2967609188 hasConcept C2776401178 @default.
- W2967609188 hasConcept C2779813781 @default.
- W2967609188 hasConcept C31601959 @default.
- W2967609188 hasConcept C41008148 @default.
- W2967609188 hasConcept C41895202 @default.
- W2967609188 hasConcept C509974204 @default.
- W2967609188 hasConcept C534262118 @default.
- W2967609188 hasConcept C54170458 @default.
- W2967609188 hasConcept C544519230 @default.
- W2967609188 hasConcept C71924100 @default.
- W2967609188 hasConcept C81363708 @default.
- W2967609188 hasConceptScore W2967609188C108583219 @default.
- W2967609188 hasConceptScore W2967609188C126838900 @default.
- W2967609188 hasConceptScore W2967609188C138885662 @default.
- W2967609188 hasConceptScore W2967609188C153180895 @default.
- W2967609188 hasConceptScore W2967609188C154945302 @default.
- W2967609188 hasConceptScore W2967609188C201645570 @default.
- W2967609188 hasConceptScore W2967609188C2776401178 @default.
- W2967609188 hasConceptScore W2967609188C2779813781 @default.
- W2967609188 hasConceptScore W2967609188C31601959 @default.
- W2967609188 hasConceptScore W2967609188C41008148 @default.
- W2967609188 hasConceptScore W2967609188C41895202 @default.
- W2967609188 hasConceptScore W2967609188C509974204 @default.
- W2967609188 hasConceptScore W2967609188C534262118 @default.
- W2967609188 hasConceptScore W2967609188C54170458 @default.
- W2967609188 hasConceptScore W2967609188C544519230 @default.
- W2967609188 hasConceptScore W2967609188C71924100 @default.
- W2967609188 hasConceptScore W2967609188C81363708 @default.
- W2967609188 hasLocation W29676091881 @default.
- W2967609188 hasOpenAccess W2967609188 @default.
- W2967609188 hasPrimaryLocation W29676091881 @default.
- W2967609188 hasRelatedWork W2731899572 @default.
- W2967609188 hasRelatedWork W2738221750 @default.
- W2967609188 hasRelatedWork W2760085659 @default.
- W2967609188 hasRelatedWork W3156786002 @default.
- W2967609188 hasRelatedWork W4281780675 @default.
- W2967609188 hasRelatedWork W4308993413 @default.
- W2967609188 hasRelatedWork W4315694979 @default.