Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967612475> ?p ?o ?g. }
- W2967612475 endingPage "112486" @default.
- W2967612475 startingPage "112486" @default.
- W2967612475 abstract "The social determinants of health literature routinely deploy socio-economic status (SES) as a key factor in accounting for women's height—an established indicator of human welfare at the population level—using traditional regression. However, this literature lacks a systematic identification of the predictive power of SES as well as the possible non-linear relationships between the measures of SES (education, occupation, and material wealth) in predicting variation in women's height. This study aims to evaluate this predictive power. We used the Demographic and Health Surveys (DHS) from 66 low- and middle-income countries (women = 1,273,644), sampled between 1994 and 2016. The analysis consisted of training seven machine-learning algorithms of different function classes and assessing their predictive power out-of-sample, vis-à-vis OLS regression. In an OLS framework, SES accounts for 0.7%, R2, of the total variance in women's height (from σOLSFix2 = 31.82 to σOLSSES2 = 31.57), adjusting for country, community, and sampling year fixed effects. The country-specific variances range from as low as 25.10 units in Egypt to as high as 74.46 units in Sao Tome and Principe. With the same set of SES measures, the best performing learner, a Bayesian neural net, produces a predictive variance of σBnnSES2 = 31.52. This is a negligible improvement in variance explained by 0.3% (σBnnSES2−σOLSSES2). Given our selection of algorithms, our findings indicate no relevant non-linear relationships between SES and women's height, and also the predictive limits of SES. We recommend that scholars report both the average effect of SES on health outcomes as well as its contribution to the variance explained. This will improve our understanding of how key social and economic factors affect health, deepening our understanding of the social determinants of health." @default.
- W2967612475 created "2019-08-22" @default.
- W2967612475 creator A5006595291 @default.
- W2967612475 creator A5011954553 @default.
- W2967612475 creator A5090745602 @default.
- W2967612475 date "2019-10-01" @default.
- W2967612475 modified "2023-09-25" @default.
- W2967612475 title "Predicting women's height from their socioeconomic status: A machine learning approach" @default.
- W2967612475 cites W1831050183 @default.
- W2967612475 cites W1969004360 @default.
- W2967612475 cites W1990448776 @default.
- W2967612475 cites W2026939881 @default.
- W2967612475 cites W2049026601 @default.
- W2967612475 cites W2055949541 @default.
- W2967612475 cites W2073633901 @default.
- W2967612475 cites W2092516228 @default.
- W2967612475 cites W2093922076 @default.
- W2967612475 cites W2100132292 @default.
- W2967612475 cites W2106698616 @default.
- W2967612475 cites W2139852278 @default.
- W2967612475 cites W2151554678 @default.
- W2967612475 cites W2155496693 @default.
- W2967612475 cites W2161643046 @default.
- W2967612475 cites W2169370494 @default.
- W2967612475 cites W2188707104 @default.
- W2967612475 cites W2190695285 @default.
- W2967612475 cites W2305947592 @default.
- W2967612475 cites W2610848680 @default.
- W2967612475 cites W2610886376 @default.
- W2967612475 cites W2616725248 @default.
- W2967612475 cites W2770256320 @default.
- W2967612475 cites W2789628344 @default.
- W2967612475 cites W2802407594 @default.
- W2967612475 cites W2808132226 @default.
- W2967612475 cites W3123811955 @default.
- W2967612475 cites W3125907937 @default.
- W2967612475 cites W4249099103 @default.
- W2967612475 doi "https://doi.org/10.1016/j.socscimed.2019.112486" @default.
- W2967612475 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31470245" @default.
- W2967612475 hasPublicationYear "2019" @default.
- W2967612475 type Work @default.
- W2967612475 sameAs 2967612475 @default.
- W2967612475 citedByCount "19" @default.
- W2967612475 countsByYear W29676124752020 @default.
- W2967612475 countsByYear W29676124752021 @default.
- W2967612475 countsByYear W29676124752022 @default.
- W2967612475 countsByYear W29676124752023 @default.
- W2967612475 crossrefType "journal-article" @default.
- W2967612475 hasAuthorship W2967612475A5006595291 @default.
- W2967612475 hasAuthorship W2967612475A5011954553 @default.
- W2967612475 hasAuthorship W2967612475A5090745602 @default.
- W2967612475 hasConcept C105795698 @default.
- W2967612475 hasConcept C111472728 @default.
- W2967612475 hasConcept C121955636 @default.
- W2967612475 hasConcept C138528620 @default.
- W2967612475 hasConcept C138885662 @default.
- W2967612475 hasConcept C144024400 @default.
- W2967612475 hasConcept C147077947 @default.
- W2967612475 hasConcept C149782125 @default.
- W2967612475 hasConcept C149923435 @default.
- W2967612475 hasConcept C162324750 @default.
- W2967612475 hasConcept C196083921 @default.
- W2967612475 hasConcept C205649164 @default.
- W2967612475 hasConcept C2778136018 @default.
- W2967612475 hasConcept C2908647359 @default.
- W2967612475 hasConcept C33923547 @default.
- W2967612475 hasConcept C48921125 @default.
- W2967612475 hasConcept C83546350 @default.
- W2967612475 hasConceptScore W2967612475C105795698 @default.
- W2967612475 hasConceptScore W2967612475C111472728 @default.
- W2967612475 hasConceptScore W2967612475C121955636 @default.
- W2967612475 hasConceptScore W2967612475C138528620 @default.
- W2967612475 hasConceptScore W2967612475C138885662 @default.
- W2967612475 hasConceptScore W2967612475C144024400 @default.
- W2967612475 hasConceptScore W2967612475C147077947 @default.
- W2967612475 hasConceptScore W2967612475C149782125 @default.
- W2967612475 hasConceptScore W2967612475C149923435 @default.
- W2967612475 hasConceptScore W2967612475C162324750 @default.
- W2967612475 hasConceptScore W2967612475C196083921 @default.
- W2967612475 hasConceptScore W2967612475C205649164 @default.
- W2967612475 hasConceptScore W2967612475C2778136018 @default.
- W2967612475 hasConceptScore W2967612475C2908647359 @default.
- W2967612475 hasConceptScore W2967612475C33923547 @default.
- W2967612475 hasConceptScore W2967612475C48921125 @default.
- W2967612475 hasConceptScore W2967612475C83546350 @default.
- W2967612475 hasLocation W29676124751 @default.
- W2967612475 hasLocation W29676124752 @default.
- W2967612475 hasOpenAccess W2967612475 @default.
- W2967612475 hasPrimaryLocation W29676124751 @default.
- W2967612475 hasRelatedWork W1998878505 @default.
- W2967612475 hasRelatedWork W2018697919 @default.
- W2967612475 hasRelatedWork W2106988031 @default.
- W2967612475 hasRelatedWork W2611267131 @default.
- W2967612475 hasRelatedWork W2946957605 @default.
- W2967612475 hasRelatedWork W3021457118 @default.
- W2967612475 hasRelatedWork W3122861356 @default.
- W2967612475 hasRelatedWork W4249094282 @default.
- W2967612475 hasRelatedWork W4288346541 @default.