Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967636462> ?p ?o ?g. }
- W2967636462 endingPage "3475" @default.
- W2967636462 startingPage "3475" @default.
- W2967636462 abstract "Internet gaming disorder in adolescents and young adults has become an increasing public concern because of its high prevalence rate and potential risk of alteration of brain functions and organizations. Cue exposure therapy is designed for reducing or maintaining craving, a core factor of relapse of addiction, and is extensively employed in addiction treatment. In a previous study, we proposed a machine-learning-based method to detect craving for gaming using multimodal physiological signals including photoplethysmogram, galvanic skin response, and electrooculogram. Our previous study demonstrated that a craving for gaming could be detected with a fairly high accuracy; however, as the feature vectors for the machine-learning-based detection of the craving of a user were selected based on the physiological data of the user that were recorded on the same day, the effectiveness of the reuse of the machine learning model constructed during the previous experiments, without any further calibration sessions, was still questionable. This “high test-retest reliability” characteristic is of importance for the practical use of the craving detection system because the system needs to be repeatedly applied to the treatment processes as a tool to monitor the efficacy of the treatment. We presented short video clips of three addictive games to nine participants, during which various physiological signals were recorded. This experiment was repeated with different video clips on three different days. Initially, we investigated the test-retest reliability of 14 features used in a craving detection system by computing the intraclass correlation coefficient. Then, we classified whether each participant experienced a craving for gaming in the third experiment using various classifiers—the support vector machine, k-nearest neighbors (kNN), centroid displacement-based kNN, linear discriminant analysis, and random forest—trained with the physiological signals recorded during the first or second experiment. Consequently, the craving/non-craving states in the third experiment were classified with an accuracy that was comparable to that achieved using the data of the same day; thus, demonstrating a high test-retest reliability and the practicality of our craving detection method. In addition, the classification performance was further enhanced by using both datasets of the first and second experiments to train the classifiers, suggesting that an individually customized game craving detection system with high accuracy can be implemented by accumulating datasets recorded on different days under different experimental conditions." @default.
- W2967636462 created "2019-08-22" @default.
- W2967636462 creator A5010414214 @default.
- W2967636462 creator A5018807391 @default.
- W2967636462 creator A5027143700 @default.
- W2967636462 date "2019-08-09" @default.
- W2967636462 modified "2023-09-23" @default.
- W2967636462 title "Machine-Learning-Based Detection of Craving for Gaming Using Multimodal Physiological Signals: Validation of Test-Retest Reliability for Practical Use" @default.
- W2967636462 cites W1062667307 @default.
- W2967636462 cites W1524480852 @default.
- W2967636462 cites W1975626957 @default.
- W2967636462 cites W1988132969 @default.
- W2967636462 cites W1995338627 @default.
- W2967636462 cites W2030477451 @default.
- W2967636462 cites W2055097229 @default.
- W2967636462 cites W2066235252 @default.
- W2967636462 cites W2067724039 @default.
- W2967636462 cites W2071344491 @default.
- W2967636462 cites W2090384501 @default.
- W2967636462 cites W2141403362 @default.
- W2967636462 cites W2143384095 @default.
- W2967636462 cites W2144802702 @default.
- W2967636462 cites W2153635508 @default.
- W2967636462 cites W2167490063 @default.
- W2967636462 cites W2177081513 @default.
- W2967636462 cites W2181904953 @default.
- W2967636462 cites W2200005229 @default.
- W2967636462 cites W2230349960 @default.
- W2967636462 cites W2309693750 @default.
- W2967636462 cites W2314702523 @default.
- W2967636462 cites W2327037637 @default.
- W2967636462 cites W2347177751 @default.
- W2967636462 cites W2411351995 @default.
- W2967636462 cites W2416416290 @default.
- W2967636462 cites W2518662649 @default.
- W2967636462 cites W2582847400 @default.
- W2967636462 cites W2725236546 @default.
- W2967636462 cites W2753465984 @default.
- W2967636462 cites W2782539451 @default.
- W2967636462 cites W2800764134 @default.
- W2967636462 cites W2804550936 @default.
- W2967636462 cites W2911964244 @default.
- W2967636462 cites W4234180827 @default.
- W2967636462 doi "https://doi.org/10.3390/s19163475" @default.
- W2967636462 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6719101" @default.
- W2967636462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31395802" @default.
- W2967636462 hasPublicationYear "2019" @default.
- W2967636462 type Work @default.
- W2967636462 sameAs 2967636462 @default.
- W2967636462 citedByCount "4" @default.
- W2967636462 countsByYear W29676364622020 @default.
- W2967636462 countsByYear W29676364622021 @default.
- W2967636462 crossrefType "journal-article" @default.
- W2967636462 hasAuthorship W2967636462A5010414214 @default.
- W2967636462 hasAuthorship W2967636462A5018807391 @default.
- W2967636462 hasAuthorship W2967636462A5027143700 @default.
- W2967636462 hasBestOaLocation W29676364621 @default.
- W2967636462 hasConcept C104709138 @default.
- W2967636462 hasConcept C118552586 @default.
- W2967636462 hasConcept C119857082 @default.
- W2967636462 hasConcept C121332964 @default.
- W2967636462 hasConcept C151730666 @default.
- W2967636462 hasConcept C154945302 @default.
- W2967636462 hasConcept C15744967 @default.
- W2967636462 hasConcept C163258240 @default.
- W2967636462 hasConcept C171606756 @default.
- W2967636462 hasConcept C2777267654 @default.
- W2967636462 hasConcept C2778739407 @default.
- W2967636462 hasConcept C2779541405 @default.
- W2967636462 hasConcept C41008148 @default.
- W2967636462 hasConcept C43214815 @default.
- W2967636462 hasConcept C48856860 @default.
- W2967636462 hasConcept C62520636 @default.
- W2967636462 hasConcept C70410870 @default.
- W2967636462 hasConcept C86803240 @default.
- W2967636462 hasConceptScore W2967636462C104709138 @default.
- W2967636462 hasConceptScore W2967636462C118552586 @default.
- W2967636462 hasConceptScore W2967636462C119857082 @default.
- W2967636462 hasConceptScore W2967636462C121332964 @default.
- W2967636462 hasConceptScore W2967636462C151730666 @default.
- W2967636462 hasConceptScore W2967636462C154945302 @default.
- W2967636462 hasConceptScore W2967636462C15744967 @default.
- W2967636462 hasConceptScore W2967636462C163258240 @default.
- W2967636462 hasConceptScore W2967636462C171606756 @default.
- W2967636462 hasConceptScore W2967636462C2777267654 @default.
- W2967636462 hasConceptScore W2967636462C2778739407 @default.
- W2967636462 hasConceptScore W2967636462C2779541405 @default.
- W2967636462 hasConceptScore W2967636462C41008148 @default.
- W2967636462 hasConceptScore W2967636462C43214815 @default.
- W2967636462 hasConceptScore W2967636462C48856860 @default.
- W2967636462 hasConceptScore W2967636462C62520636 @default.
- W2967636462 hasConceptScore W2967636462C70410870 @default.
- W2967636462 hasConceptScore W2967636462C86803240 @default.
- W2967636462 hasFunder F4320322120 @default.
- W2967636462 hasIssue "16" @default.
- W2967636462 hasLocation W29676364621 @default.
- W2967636462 hasLocation W29676364622 @default.
- W2967636462 hasLocation W29676364623 @default.