Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967687639> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2967687639 abstract "Machine learning algorithms learn from data and use data from databases that are mutable; therefore, the data and the results of machine learning cannot be fully trusted. Also, the machine learning process is often difficult to automate. A unified analytical framework for trustable machine learning has been presented in the literature. It proposed building a trustable machine learning system by using blockchain technology, which can store data in a permanent and immutable way. In addition, smart contracts on blockchain are used to automate the machine learning process. In the proposed framework, a core machine learning algorithm can have three implementations: server layer implementation, streaming layer implementation, and smart contract implementation. However, there are still open questions. First, the streaming layer usually deploys on edge devices and therefore has limited memory and computing power. How can we run machine learning on the streaming layer? Second, most data that are stored on blockchain are financial transactions, for which fraud detection is often needed. However, in some applications, training data are hard to obtain. Can we build good machine learning models to do fraud detection with limited training data? These questions motivated this paper; which makes two contributions. First, it proposes training a machine learning model on the server layer and saving the model with a special binary data format. Then, the streaming layer can take this blob of binary data as input and score incoming data online. The blob of binary data is very compact and can be deployed on edge devices. Second, the paper presents a new method of synthetic data generation that can enrich the training data set. Experiments show that this synthetic data generation is very effective in applications such as fraud detection in financial data." @default.
- W2967687639 created "2019-08-22" @default.
- W2967687639 creator A5027773298 @default.
- W2967687639 creator A5033279525 @default.
- W2967687639 creator A5085142676 @default.
- W2967687639 date "2019-08-14" @default.
- W2967687639 modified "2023-09-27" @default.
- W2967687639 title "Trustable and Automated Machine Learning Running with Blockchain and Its Applications." @default.
- W2967687639 cites W1504695911 @default.
- W2967687639 cites W1558402437 @default.
- W2967687639 cites W1686810756 @default.
- W2967687639 cites W2053757129 @default.
- W2967687639 cites W2069980026 @default.
- W2967687639 cites W2072737285 @default.
- W2967687639 cites W2074865755 @default.
- W2967687639 cites W2096847629 @default.
- W2967687639 cites W2101899163 @default.
- W2967687639 cites W2105749831 @default.
- W2967687639 cites W2145669878 @default.
- W2967687639 cites W2155378438 @default.
- W2967687639 cites W2166559705 @default.
- W2967687639 cites W2194775991 @default.
- W2967687639 cites W2738401084 @default.
- W2967687639 cites W2775143585 @default.
- W2967687639 cites W2788246026 @default.
- W2967687639 cites W2794670651 @default.
- W2967687639 cites W2896193347 @default.
- W2967687639 cites W2952606116 @default.
- W2967687639 cites W2963446712 @default.
- W2967687639 cites W2963703618 @default.
- W2967687639 cites W2964078592 @default.
- W2967687639 cites W2964121744 @default.
- W2967687639 hasPublicationYear "2019" @default.
- W2967687639 type Work @default.
- W2967687639 sameAs 2967687639 @default.
- W2967687639 citedByCount "0" @default.
- W2967687639 crossrefType "posted-content" @default.
- W2967687639 hasAuthorship W2967687639A5027773298 @default.
- W2967687639 hasAuthorship W2967687639A5033279525 @default.
- W2967687639 hasAuthorship W2967687639A5085142676 @default.
- W2967687639 hasConcept C111919701 @default.
- W2967687639 hasConcept C115903097 @default.
- W2967687639 hasConcept C115903868 @default.
- W2967687639 hasConcept C119857082 @default.
- W2967687639 hasConcept C154945302 @default.
- W2967687639 hasConcept C162307627 @default.
- W2967687639 hasConcept C178790620 @default.
- W2967687639 hasConcept C185592680 @default.
- W2967687639 hasConcept C26713055 @default.
- W2967687639 hasConcept C2779227376 @default.
- W2967687639 hasConcept C2779687700 @default.
- W2967687639 hasConcept C38652104 @default.
- W2967687639 hasConcept C41008148 @default.
- W2967687639 hasConcept C75684735 @default.
- W2967687639 hasConcept C77967617 @default.
- W2967687639 hasConcept C98045186 @default.
- W2967687639 hasConceptScore W2967687639C111919701 @default.
- W2967687639 hasConceptScore W2967687639C115903097 @default.
- W2967687639 hasConceptScore W2967687639C115903868 @default.
- W2967687639 hasConceptScore W2967687639C119857082 @default.
- W2967687639 hasConceptScore W2967687639C154945302 @default.
- W2967687639 hasConceptScore W2967687639C162307627 @default.
- W2967687639 hasConceptScore W2967687639C178790620 @default.
- W2967687639 hasConceptScore W2967687639C185592680 @default.
- W2967687639 hasConceptScore W2967687639C26713055 @default.
- W2967687639 hasConceptScore W2967687639C2779227376 @default.
- W2967687639 hasConceptScore W2967687639C2779687700 @default.
- W2967687639 hasConceptScore W2967687639C38652104 @default.
- W2967687639 hasConceptScore W2967687639C41008148 @default.
- W2967687639 hasConceptScore W2967687639C75684735 @default.
- W2967687639 hasConceptScore W2967687639C77967617 @default.
- W2967687639 hasConceptScore W2967687639C98045186 @default.
- W2967687639 hasLocation W29676876391 @default.
- W2967687639 hasOpenAccess W2967687639 @default.
- W2967687639 hasPrimaryLocation W29676876391 @default.
- W2967687639 hasRelatedWork W1511741641 @default.
- W2967687639 hasRelatedWork W1591368770 @default.
- W2967687639 hasRelatedWork W1685605429 @default.
- W2967687639 hasRelatedWork W2163061414 @default.
- W2967687639 hasRelatedWork W2202973979 @default.
- W2967687639 hasRelatedWork W2254936419 @default.
- W2967687639 hasRelatedWork W2766233171 @default.
- W2967687639 hasRelatedWork W2810638323 @default.
- W2967687639 hasRelatedWork W2899473595 @default.
- W2967687639 hasRelatedWork W2900492647 @default.
- W2967687639 hasRelatedWork W2909609196 @default.
- W2967687639 hasRelatedWork W2970402754 @default.
- W2967687639 hasRelatedWork W2982597254 @default.
- W2967687639 hasRelatedWork W2982672038 @default.
- W2967687639 hasRelatedWork W2993233138 @default.
- W2967687639 hasRelatedWork W2995480811 @default.
- W2967687639 hasRelatedWork W3110982060 @default.
- W2967687639 hasRelatedWork W3112020612 @default.
- W2967687639 hasRelatedWork W3172338094 @default.
- W2967687639 hasRelatedWork W1674768379 @default.
- W2967687639 isParatext "false" @default.
- W2967687639 isRetracted "false" @default.
- W2967687639 magId "2967687639" @default.
- W2967687639 workType "article" @default.