Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967688728> ?p ?o ?g. }
- W2967688728 endingPage "e110" @default.
- W2967688728 startingPage "e110" @default.
- W2967688728 abstract "Abstract Natural products represent a rich reservoir of small molecule drug candidates utilized as antimicrobial drugs, anticancer therapies, and immunomodulatory agents. These molecules are microbial secondary metabolites synthesized by co-localized genes termed Biosynthetic Gene Clusters (BGCs). The increase in full microbial genomes and similar resources has led to development of BGC prediction algorithms, although their precision and ability to identify novel BGC classes could be improved. Here we present a deep learning strategy (DeepBGC) that offers reduced false positive rates in BGC identification and an improved ability to extrapolate and identify novel BGC classes compared to existing machine-learning tools. We supplemented this with random forest classifiers that accurately predicted BGC product classes and potential chemical activity. Application of DeepBGC to bacterial genomes uncovered previously undetectable putative BGCs that may code for natural products with novel biologic activities. The improved accuracy and classification ability of DeepBGC represents a major addition to in-silico BGC identification." @default.
- W2967688728 created "2019-08-22" @default.
- W2967688728 creator A5016775662 @default.
- W2967688728 creator A5023486283 @default.
- W2967688728 creator A5024958116 @default.
- W2967688728 creator A5026226942 @default.
- W2967688728 creator A5026545442 @default.
- W2967688728 creator A5030188830 @default.
- W2967688728 creator A5035221639 @default.
- W2967688728 creator A5035790499 @default.
- W2967688728 creator A5040163724 @default.
- W2967688728 creator A5054324582 @default.
- W2967688728 creator A5058308788 @default.
- W2967688728 creator A5074567563 @default.
- W2967688728 creator A5084406166 @default.
- W2967688728 creator A5086333418 @default.
- W2967688728 creator A5088571596 @default.
- W2967688728 creator A5091288349 @default.
- W2967688728 date "2019-08-10" @default.
- W2967688728 modified "2023-10-17" @default.
- W2967688728 title "A deep learning genome-mining strategy for biosynthetic gene cluster prediction" @default.
- W2967688728 cites W1202680985 @default.
- W2967688728 cites W1501531009 @default.
- W2967688728 cites W1845689933 @default.
- W2967688728 cites W1972203402 @default.
- W2967688728 cites W1980530950 @default.
- W2967688728 cites W1992716708 @default.
- W2967688728 cites W2009257824 @default.
- W2967688728 cites W2009898018 @default.
- W2967688728 cites W2018334687 @default.
- W2967688728 cites W2055043387 @default.
- W2967688728 cites W2064675550 @default.
- W2967688728 cites W2077514957 @default.
- W2967688728 cites W2082418604 @default.
- W2967688728 cites W2088226047 @default.
- W2967688728 cites W2094402554 @default.
- W2967688728 cites W2107986672 @default.
- W2967688728 cites W2110363791 @default.
- W2967688728 cites W2118119639 @default.
- W2967688728 cites W2131774270 @default.
- W2967688728 cites W2135639274 @default.
- W2967688728 cites W2135967789 @default.
- W2967688728 cites W2143485490 @default.
- W2967688728 cites W2146157756 @default.
- W2967688728 cites W2151831732 @default.
- W2967688728 cites W2156226201 @default.
- W2967688728 cites W2161886128 @default.
- W2967688728 cites W2173732482 @default.
- W2967688728 cites W2185500533 @default.
- W2967688728 cites W2187341651 @default.
- W2967688728 cites W2187810943 @default.
- W2967688728 cites W2189116376 @default.
- W2967688728 cites W2224056471 @default.
- W2967688728 cites W2410975458 @default.
- W2967688728 cites W2463736536 @default.
- W2967688728 cites W2608736608 @default.
- W2967688728 cites W2800388620 @default.
- W2967688728 cites W2801248003 @default.
- W2967688728 cites W2919115771 @default.
- W2967688728 cites W2950436573 @default.
- W2967688728 doi "https://doi.org/10.1093/nar/gkz654" @default.
- W2967688728 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6765103" @default.
- W2967688728 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31400112" @default.
- W2967688728 hasPublicationYear "2019" @default.
- W2967688728 type Work @default.
- W2967688728 sameAs 2967688728 @default.
- W2967688728 citedByCount "145" @default.
- W2967688728 countsByYear W29676887282019 @default.
- W2967688728 countsByYear W29676887282020 @default.
- W2967688728 countsByYear W29676887282021 @default.
- W2967688728 countsByYear W29676887282022 @default.
- W2967688728 countsByYear W29676887282023 @default.
- W2967688728 crossrefType "journal-article" @default.
- W2967688728 hasAuthorship W2967688728A5016775662 @default.
- W2967688728 hasAuthorship W2967688728A5023486283 @default.
- W2967688728 hasAuthorship W2967688728A5024958116 @default.
- W2967688728 hasAuthorship W2967688728A5026226942 @default.
- W2967688728 hasAuthorship W2967688728A5026545442 @default.
- W2967688728 hasAuthorship W2967688728A5030188830 @default.
- W2967688728 hasAuthorship W2967688728A5035221639 @default.
- W2967688728 hasAuthorship W2967688728A5035790499 @default.
- W2967688728 hasAuthorship W2967688728A5040163724 @default.
- W2967688728 hasAuthorship W2967688728A5054324582 @default.
- W2967688728 hasAuthorship W2967688728A5058308788 @default.
- W2967688728 hasAuthorship W2967688728A5074567563 @default.
- W2967688728 hasAuthorship W2967688728A5084406166 @default.
- W2967688728 hasAuthorship W2967688728A5086333418 @default.
- W2967688728 hasAuthorship W2967688728A5088571596 @default.
- W2967688728 hasAuthorship W2967688728A5091288349 @default.
- W2967688728 hasBestOaLocation W29676887281 @default.
- W2967688728 hasConcept C104317684 @default.
- W2967688728 hasConcept C116834253 @default.
- W2967688728 hasConcept C141231307 @default.
- W2967688728 hasConcept C18903297 @default.
- W2967688728 hasConcept C2775905019 @default.
- W2967688728 hasConcept C2779396153 @default.
- W2967688728 hasConcept C36857842 @default.
- W2967688728 hasConcept C3742359 @default.