Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967728488> ?p ?o ?g. }
- W2967728488 endingPage "11358" @default.
- W2967728488 startingPage "11346" @default.
- W2967728488 abstract "In this paper, a signal processing framework using high-resolution algorithms is applied to automotive radar systems for target separation purposes. In many critical use cases, targets sharing similar parameters, i.e., range and relative velocity, can hardly be discriminated in a 2-dimensional (2-D) range-Doppler spectrum via conventional radar signal processing techniques. The proposed framework by taking advantage of a 2-D model-based algorithm with high-resolution capability, i.e., modified matrix enhancement and matrix pencil (MMEMP), is able to separate the overlapping targets by jointly estimating their aforementioned target parameters in a precise manner. Additionally, to reduce computational cost, the presented framework could preselect the peaks (local maxima) of interest via a 2-D model order selection algorithm, i.e., 2-D subspace-based automatic model order selection (2-D SAMOS), and apply the MMEMP only in multi-target situations. Finally, simulation and experiments are carried out to evaluate the performance of the proposed high-resolution target separation framework." @default.
- W2967728488 created "2019-08-22" @default.
- W2967728488 creator A5011691028 @default.
- W2967728488 creator A5029938305 @default.
- W2967728488 creator A5065634508 @default.
- W2967728488 date "2019-12-01" @default.
- W2967728488 modified "2023-10-18" @default.
- W2967728488 title "A High-Resolution Framework for Range-Doppler Frequency Estimation in Automotive Radar Systems" @default.
- W2967728488 cites W1560991867 @default.
- W2967728488 cites W1952629836 @default.
- W2967728488 cites W1968079322 @default.
- W2967728488 cites W1998070180 @default.
- W2967728488 cites W2006579621 @default.
- W2967728488 cites W2013912476 @default.
- W2967728488 cites W2020255126 @default.
- W2967728488 cites W2030250082 @default.
- W2967728488 cites W2042825296 @default.
- W2967728488 cites W2050982928 @default.
- W2967728488 cites W2065656021 @default.
- W2967728488 cites W2073351574 @default.
- W2967728488 cites W2073703261 @default.
- W2967728488 cites W2096710051 @default.
- W2967728488 cites W2105233799 @default.
- W2967728488 cites W2109285781 @default.
- W2967728488 cites W2110979989 @default.
- W2967728488 cites W2113484718 @default.
- W2967728488 cites W2113638573 @default.
- W2967728488 cites W2125621743 @default.
- W2967728488 cites W2127411941 @default.
- W2967728488 cites W2128131274 @default.
- W2967728488 cites W2131547400 @default.
- W2967728488 cites W2140515654 @default.
- W2967728488 cites W2140536883 @default.
- W2967728488 cites W2146492797 @default.
- W2967728488 cites W2160664759 @default.
- W2967728488 cites W2169948237 @default.
- W2967728488 cites W2172137656 @default.
- W2967728488 cites W2345379589 @default.
- W2967728488 cites W2418142352 @default.
- W2967728488 cites W2511846129 @default.
- W2967728488 cites W2565293665 @default.
- W2967728488 cites W2582666574 @default.
- W2967728488 cites W2592680288 @default.
- W2967728488 cites W2740708328 @default.
- W2967728488 cites W2784238665 @default.
- W2967728488 cites W2888494272 @default.
- W2967728488 cites W2912401847 @default.
- W2967728488 cites W2914202397 @default.
- W2967728488 cites W2960895847 @default.
- W2967728488 doi "https://doi.org/10.1109/jsen.2019.2933776" @default.
- W2967728488 hasPublicationYear "2019" @default.
- W2967728488 type Work @default.
- W2967728488 sameAs 2967728488 @default.
- W2967728488 citedByCount "13" @default.
- W2967728488 countsByYear W29677284882020 @default.
- W2967728488 countsByYear W29677284882021 @default.
- W2967728488 countsByYear W29677284882022 @default.
- W2967728488 countsByYear W29677284882023 @default.
- W2967728488 crossrefType "journal-article" @default.
- W2967728488 hasAuthorship W2967728488A5011691028 @default.
- W2967728488 hasAuthorship W2967728488A5029938305 @default.
- W2967728488 hasAuthorship W2967728488A5065634508 @default.
- W2967728488 hasConcept C104267543 @default.
- W2967728488 hasConcept C11413529 @default.
- W2967728488 hasConcept C121332964 @default.
- W2967728488 hasConcept C127413603 @default.
- W2967728488 hasConcept C1276947 @default.
- W2967728488 hasConcept C142757262 @default.
- W2967728488 hasConcept C146978453 @default.
- W2967728488 hasConcept C154945302 @default.
- W2967728488 hasConcept C204323151 @default.
- W2967728488 hasConcept C32834561 @default.
- W2967728488 hasConcept C41008148 @default.
- W2967728488 hasConcept C554190296 @default.
- W2967728488 hasConcept C76155785 @default.
- W2967728488 hasConceptScore W2967728488C104267543 @default.
- W2967728488 hasConceptScore W2967728488C11413529 @default.
- W2967728488 hasConceptScore W2967728488C121332964 @default.
- W2967728488 hasConceptScore W2967728488C127413603 @default.
- W2967728488 hasConceptScore W2967728488C1276947 @default.
- W2967728488 hasConceptScore W2967728488C142757262 @default.
- W2967728488 hasConceptScore W2967728488C146978453 @default.
- W2967728488 hasConceptScore W2967728488C154945302 @default.
- W2967728488 hasConceptScore W2967728488C204323151 @default.
- W2967728488 hasConceptScore W2967728488C32834561 @default.
- W2967728488 hasConceptScore W2967728488C41008148 @default.
- W2967728488 hasConceptScore W2967728488C554190296 @default.
- W2967728488 hasConceptScore W2967728488C76155785 @default.
- W2967728488 hasIssue "23" @default.
- W2967728488 hasLocation W29677284881 @default.
- W2967728488 hasOpenAccess W2967728488 @default.
- W2967728488 hasPrimaryLocation W29677284881 @default.
- W2967728488 hasRelatedWork W1981549260 @default.
- W2967728488 hasRelatedWork W2012257353 @default.
- W2967728488 hasRelatedWork W2016711537 @default.
- W2967728488 hasRelatedWork W2122630306 @default.
- W2967728488 hasRelatedWork W2166742769 @default.
- W2967728488 hasRelatedWork W2351491280 @default.