Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967754460> ?p ?o ?g. }
- W2967754460 endingPage "112867" @default.
- W2967754460 startingPage "112867" @default.
- W2967754460 abstract "Multiple traveling salesmen problem (MTSP) is not only a generalization of the traveling salesman problem (TSP), but also more suitable for modeling practical problems in the real life than TSP. For solving the MTSP with multiple depots, the requirement of minimum and maximum number of cities that each salesman should visit, a hybrid algorithm called ant colony-partheno genetic algorithms (AC-PGA) is provided by combining partheno genetic algorithms (PGA) and ant colony algorithms (ACO). The main idea in this paper is to divide the variables into two parts. In detail, it exploits PGA to comprehensively search the best value of the first part variables and then utilizes ACO to accurately determine the second part variables value. For comparative analysis, PGA, improved PGA (IPGA), two-part wolf pack search (TWPS), artificial bee colony (ABC) and invasive weed optimization (IWO) algorithms are adopted to solve MTSP and validated with publicly available TSPLIB benchmarks. The results of comparative experiments show that AC-PGA is sufficiently effective in solving large scale MTSP and has better performance than the existing algorithms." @default.
- W2967754460 created "2019-08-22" @default.
- W2967754460 creator A5013429167 @default.
- W2967754460 creator A5021410834 @default.
- W2967754460 creator A5089216253 @default.
- W2967754460 date "2020-01-01" @default.
- W2967754460 modified "2023-10-17" @default.
- W2967754460 title "A new efficient hybrid algorithm for large scale multiple traveling salesman problems" @default.
- W2967754460 cites W1421911707 @default.
- W2967754460 cites W1963620884 @default.
- W2967754460 cites W1973490867 @default.
- W2967754460 cites W1979426314 @default.
- W2967754460 cites W2001474347 @default.
- W2967754460 cites W2002730737 @default.
- W2967754460 cites W2023070290 @default.
- W2967754460 cites W2029085765 @default.
- W2967754460 cites W2033915107 @default.
- W2967754460 cites W2036573713 @default.
- W2967754460 cites W2041970949 @default.
- W2967754460 cites W2050819731 @default.
- W2967754460 cites W2066558813 @default.
- W2967754460 cites W2096166399 @default.
- W2967754460 cites W2166170567 @default.
- W2967754460 cites W2174465401 @default.
- W2967754460 cites W2213244149 @default.
- W2967754460 cites W2294259353 @default.
- W2967754460 cites W2308186591 @default.
- W2967754460 cites W235790960 @default.
- W2967754460 cites W2375089373 @default.
- W2967754460 cites W2497712405 @default.
- W2967754460 cites W2547437151 @default.
- W2967754460 cites W2583603977 @default.
- W2967754460 cites W2611447099 @default.
- W2967754460 cites W2620774153 @default.
- W2967754460 cites W2726105064 @default.
- W2967754460 cites W2743299839 @default.
- W2967754460 cites W2748032639 @default.
- W2967754460 cites W2751737814 @default.
- W2967754460 cites W2769848411 @default.
- W2967754460 cites W2771632251 @default.
- W2967754460 cites W2779455732 @default.
- W2967754460 cites W2793329764 @default.
- W2967754460 cites W2795717898 @default.
- W2967754460 cites W2804553260 @default.
- W2967754460 cites W2810403777 @default.
- W2967754460 cites W2885965377 @default.
- W2967754460 cites W2919805933 @default.
- W2967754460 cites W2962992409 @default.
- W2967754460 cites W3123455854 @default.
- W2967754460 cites W997017151 @default.
- W2967754460 doi "https://doi.org/10.1016/j.eswa.2019.112867" @default.
- W2967754460 hasPublicationYear "2020" @default.
- W2967754460 type Work @default.
- W2967754460 sameAs 2967754460 @default.
- W2967754460 citedByCount "49" @default.
- W2967754460 countsByYear W29677544602020 @default.
- W2967754460 countsByYear W29677544602021 @default.
- W2967754460 countsByYear W29677544602022 @default.
- W2967754460 countsByYear W29677544602023 @default.
- W2967754460 crossrefType "journal-article" @default.
- W2967754460 hasAuthorship W2967754460A5013429167 @default.
- W2967754460 hasAuthorship W2967754460A5021410834 @default.
- W2967754460 hasAuthorship W2967754460A5089216253 @default.
- W2967754460 hasConcept C109718341 @default.
- W2967754460 hasConcept C11413529 @default.
- W2967754460 hasConcept C121332964 @default.
- W2967754460 hasConcept C126255220 @default.
- W2967754460 hasConcept C134306372 @default.
- W2967754460 hasConcept C175859090 @default.
- W2967754460 hasConcept C177148314 @default.
- W2967754460 hasConcept C188919014 @default.
- W2967754460 hasConcept C2778755073 @default.
- W2967754460 hasConcept C33923547 @default.
- W2967754460 hasConcept C40128228 @default.
- W2967754460 hasConcept C41008148 @default.
- W2967754460 hasConcept C4935549 @default.
- W2967754460 hasConcept C60891933 @default.
- W2967754460 hasConcept C62520636 @default.
- W2967754460 hasConcept C8880873 @default.
- W2967754460 hasConcept C97133563 @default.
- W2967754460 hasConceptScore W2967754460C109718341 @default.
- W2967754460 hasConceptScore W2967754460C11413529 @default.
- W2967754460 hasConceptScore W2967754460C121332964 @default.
- W2967754460 hasConceptScore W2967754460C126255220 @default.
- W2967754460 hasConceptScore W2967754460C134306372 @default.
- W2967754460 hasConceptScore W2967754460C175859090 @default.
- W2967754460 hasConceptScore W2967754460C177148314 @default.
- W2967754460 hasConceptScore W2967754460C188919014 @default.
- W2967754460 hasConceptScore W2967754460C2778755073 @default.
- W2967754460 hasConceptScore W2967754460C33923547 @default.
- W2967754460 hasConceptScore W2967754460C40128228 @default.
- W2967754460 hasConceptScore W2967754460C41008148 @default.
- W2967754460 hasConceptScore W2967754460C4935549 @default.
- W2967754460 hasConceptScore W2967754460C60891933 @default.
- W2967754460 hasConceptScore W2967754460C62520636 @default.
- W2967754460 hasConceptScore W2967754460C8880873 @default.
- W2967754460 hasConceptScore W2967754460C97133563 @default.
- W2967754460 hasFunder F4320321001 @default.