Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967755745> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2967755745 abstract "Abstract Deep Machine Learning (DML) in commercial applications such as recognizing animal species in photographs occurred through analyzing large volumes of public data. To achieve similar success in brain tumor imaging, additional factors must be addressed such as the need to follow strict regulatory protocols, work with limited datasets, and protect patient privacy. Generative adversary network (GAN) restricted to intracranial disease is one possibility to overcome these challenges and enable training on small annotated datasets to synthesize new samples. Large fabricated brain metastases (BM) training datasets derived from patient MRI using GAN models may enable DML of BM MRI studies. METHOD: We randomly selected 82 glioma patient imaging studies from the MICCAI BraTS 2018 Challenge1. All patients underwent contouring of GD-enhancing tumor (C+), peritumoral T2 (pT2), necrotic and non-enhancing tumor core (NCR/NET). Images are co-registered to the anatomical template and skull-stripped. Our network consists of a GAN and a discriminative network. The generative model works to synthesize images from labels. Labels comprise the normal brain mask as well as the contoured C+, pT2 and NCR/NET. Normal brain mask is extracted from threshold segmentation on T2-weighted image (T2WI). A discriminative network compares the difference between synthetic and real patient image in both pixel and perceptual difference. The generative model is trained to minimize the difference from the discriminative network. This method was refined in the glioblastoma dataset and applied to BM MRI. RESULTS: Figure 1. Synthetic BM MRI images derived from human brain MRI studies using the GAN model with four modalities (T2, T2 FLAIR, T1 contrasted image, and T1 non-contrasted Image). CONCLUSION: Training DML in BM disease using GAN MRI models may overcome limitations in applying DML to healthcare, namely volume of high-quality data and patient privacy. GAN based modeling for BM needs to be further refined and validated." @default.
- W2967755745 created "2019-08-22" @default.
- W2967755745 creator A5006860803 @default.
- W2967755745 creator A5046134039 @default.
- W2967755745 creator A5070637070 @default.
- W2967755745 date "2019-08-01" @default.
- W2967755745 modified "2023-10-18" @default.
- W2967755745 title "BSCI-14. SYNTHETIC METASTATIC BRAIN DISEASE MRI IMAGES CREATED USING A GENERATIVE ADVERSARY NETWORK TO OVERCOME DEEP MACHINE LEARNING CHALLENGES IN HEALTHCARE" @default.
- W2967755745 doi "https://doi.org/10.1093/noajnl/vdz014.012" @default.
- W2967755745 hasPublicationYear "2019" @default.
- W2967755745 type Work @default.
- W2967755745 sameAs 2967755745 @default.
- W2967755745 citedByCount "0" @default.
- W2967755745 crossrefType "journal-article" @default.
- W2967755745 hasAuthorship W2967755745A5006860803 @default.
- W2967755745 hasAuthorship W2967755745A5046134039 @default.
- W2967755745 hasAuthorship W2967755745A5070637070 @default.
- W2967755745 hasBestOaLocation W29677557451 @default.
- W2967755745 hasConcept C108583219 @default.
- W2967755745 hasConcept C119857082 @default.
- W2967755745 hasConcept C121684516 @default.
- W2967755745 hasConcept C153180895 @default.
- W2967755745 hasConcept C154945302 @default.
- W2967755745 hasConcept C167966045 @default.
- W2967755745 hasConcept C199360897 @default.
- W2967755745 hasConcept C2779104521 @default.
- W2967755745 hasConcept C39890363 @default.
- W2967755745 hasConcept C41008148 @default.
- W2967755745 hasConcept C43521106 @default.
- W2967755745 hasConcept C89600930 @default.
- W2967755745 hasConcept C97931131 @default.
- W2967755745 hasConceptScore W2967755745C108583219 @default.
- W2967755745 hasConceptScore W2967755745C119857082 @default.
- W2967755745 hasConceptScore W2967755745C121684516 @default.
- W2967755745 hasConceptScore W2967755745C153180895 @default.
- W2967755745 hasConceptScore W2967755745C154945302 @default.
- W2967755745 hasConceptScore W2967755745C167966045 @default.
- W2967755745 hasConceptScore W2967755745C199360897 @default.
- W2967755745 hasConceptScore W2967755745C2779104521 @default.
- W2967755745 hasConceptScore W2967755745C39890363 @default.
- W2967755745 hasConceptScore W2967755745C41008148 @default.
- W2967755745 hasConceptScore W2967755745C43521106 @default.
- W2967755745 hasConceptScore W2967755745C89600930 @default.
- W2967755745 hasConceptScore W2967755745C97931131 @default.
- W2967755745 hasLocation W29677557451 @default.
- W2967755745 hasLocation W29677557452 @default.
- W2967755745 hasOpenAccess W2967755745 @default.
- W2967755745 hasPrimaryLocation W29677557451 @default.
- W2967755745 hasRelatedWork W10202958 @default.
- W2967755745 hasRelatedWork W10379689 @default.
- W2967755745 hasRelatedWork W15135299 @default.
- W2967755745 hasRelatedWork W3891032 @default.
- W2967755745 hasRelatedWork W4703903 @default.
- W2967755745 hasRelatedWork W6918093 @default.
- W2967755745 hasRelatedWork W7303821 @default.
- W2967755745 hasRelatedWork W9190101 @default.
- W2967755745 hasRelatedWork W9534576 @default.
- W2967755745 hasRelatedWork W9657784 @default.
- W2967755745 isParatext "false" @default.
- W2967755745 isRetracted "false" @default.
- W2967755745 magId "2967755745" @default.
- W2967755745 workType "article" @default.