Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967800086> ?p ?o ?g. }
- W2967800086 endingPage "116087" @default.
- W2967800086 startingPage "116087" @default.
- W2967800086 abstract "Diffusion MRI (dMRI) in ex vivo human brain specimens is an important research tool for neuroanatomical investigations and the validation of dMRI techniques. Many ex vivo dMRI applications have benefited from very high dMRI resolutions achievable on small-bore preclinical or animal MRI scanners for small tissue samples. However, the investigation of entire human brains post mortem provides the important context of entire white matter (WM) network systems and entire gray matter (GM) areas connected through these systems. The investigation of intact ex vivo human brains in large bore systems creates challenges due to the limited gradient performance and transmit radio-frequency (B1+) inhomogeneities, specially at ultra-high field (UHF, 7T and higher). To overcome these issues, it is necessary to tailor ex vivo diffusion-weighted sequences specifically for high resolution and high diffusion-weighting. Here, we present kT-dSTEAM, which achieves B1+ homogenization across whole human brain specimens using parallel transmit (pTx) on a 9.4T MR system. We use kT-dSTEAM to obtain multi-shell high b-value and high resolution diffusion-weighted data in ex vivo whole human brains. Isotropic whole brain data can be acquired at high b-value (6000–8000 s/mm2) at high resolution (1000 μm) and at moderate b-value (3000 s/mm2) at ultra-high isotropic resolution (400 μm). As an illustration of the advantages of the ultra-high resolution, tractography across the WM/GM border shows less of the unwanted gyral crown bias, and more high-curvature paths connecting the sulcal wall than at lower resolution. The kT-dSTEAM also allows for acquisition of T1 and T2 weighted images suitable for estimating quantitative T1 and T2 maps. Finally, multi-shell analysis of kT-dSTEAM data at variable mixing time (TM) is shown as an approach for ex vivo data analysis which is adapted to the strengths of STEAM diffusion-weighting. Here, we use this gain for multi-orientation modelling and crossing-fiber tractography. We show that multi-shell data allows superior multiple orientation tractography of known crossing fiber structures in the brain stem." @default.
- W2967800086 created "2019-08-22" @default.
- W2967800086 creator A5023239998 @default.
- W2967800086 creator A5038330845 @default.
- W2967800086 creator A5038774419 @default.
- W2967800086 creator A5039308474 @default.
- W2967800086 creator A5062957500 @default.
- W2967800086 creator A5089922303 @default.
- W2967800086 date "2019-11-01" @default.
- W2967800086 modified "2023-10-17" @default.
- W2967800086 title "Ultra-high resolution and multi-shell diffusion MRI of intact ex vivo human brains using kT-dSTEAM at 9.4T" @default.
- W2967800086 cites W1503242095 @default.
- W2967800086 cites W1590250858 @default.
- W2967800086 cites W1827542220 @default.
- W2967800086 cites W1969586479 @default.
- W2967800086 cites W1975017507 @default.
- W2967800086 cites W1976239482 @default.
- W2967800086 cites W1981745606 @default.
- W2967800086 cites W1985385518 @default.
- W2967800086 cites W1985629949 @default.
- W2967800086 cites W1996167719 @default.
- W2967800086 cites W2004268432 @default.
- W2967800086 cites W2014266194 @default.
- W2967800086 cites W2014557581 @default.
- W2967800086 cites W2023454750 @default.
- W2967800086 cites W2028667285 @default.
- W2967800086 cites W2031612583 @default.
- W2967800086 cites W2040940761 @default.
- W2967800086 cites W2043932413 @default.
- W2967800086 cites W2045718731 @default.
- W2967800086 cites W2051469128 @default.
- W2967800086 cites W2056066541 @default.
- W2967800086 cites W2059784307 @default.
- W2967800086 cites W2064566996 @default.
- W2967800086 cites W2067489705 @default.
- W2967800086 cites W2070464891 @default.
- W2967800086 cites W2074888367 @default.
- W2967800086 cites W2079246150 @default.
- W2967800086 cites W2088412524 @default.
- W2967800086 cites W2091091777 @default.
- W2967800086 cites W2100478897 @default.
- W2967800086 cites W2103165428 @default.
- W2967800086 cites W2107855009 @default.
- W2967800086 cites W2114401183 @default.
- W2967800086 cites W2116513591 @default.
- W2967800086 cites W2117649283 @default.
- W2967800086 cites W2122662954 @default.
- W2967800086 cites W2123866314 @default.
- W2967800086 cites W2124769092 @default.
- W2967800086 cites W2134718188 @default.
- W2967800086 cites W2143671152 @default.
- W2967800086 cites W2144536070 @default.
- W2967800086 cites W2144982232 @default.
- W2967800086 cites W2149337534 @default.
- W2967800086 cites W2151210608 @default.
- W2967800086 cites W2160112896 @default.
- W2967800086 cites W2290321385 @default.
- W2967800086 cites W2298552625 @default.
- W2967800086 cites W2308113675 @default.
- W2967800086 cites W2316435534 @default.
- W2967800086 cites W2508982726 @default.
- W2967800086 cites W2551534731 @default.
- W2967800086 cites W2586127859 @default.
- W2967800086 cites W2599801522 @default.
- W2967800086 cites W2607969057 @default.
- W2967800086 cites W2611301338 @default.
- W2967800086 cites W2623064601 @default.
- W2967800086 cites W2802229722 @default.
- W2967800086 cites W2809642647 @default.
- W2967800086 cites W2963028315 @default.
- W2967800086 doi "https://doi.org/10.1016/j.neuroimage.2019.116087" @default.
- W2967800086 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31408716" @default.
- W2967800086 hasPublicationYear "2019" @default.
- W2967800086 type Work @default.
- W2967800086 sameAs 2967800086 @default.
- W2967800086 citedByCount "23" @default.
- W2967800086 countsByYear W29678000862019 @default.
- W2967800086 countsByYear W29678000862020 @default.
- W2967800086 countsByYear W29678000862021 @default.
- W2967800086 countsByYear W29678000862022 @default.
- W2967800086 countsByYear W29678000862023 @default.
- W2967800086 crossrefType "journal-article" @default.
- W2967800086 hasAuthorship W2967800086A5023239998 @default.
- W2967800086 hasAuthorship W2967800086A5038330845 @default.
- W2967800086 hasAuthorship W2967800086A5038774419 @default.
- W2967800086 hasAuthorship W2967800086A5039308474 @default.
- W2967800086 hasAuthorship W2967800086A5062957500 @default.
- W2967800086 hasAuthorship W2967800086A5089922303 @default.
- W2967800086 hasBestOaLocation W29678000861 @default.
- W2967800086 hasConcept C121332964 @default.
- W2967800086 hasConcept C126838900 @default.
- W2967800086 hasConcept C127313418 @default.
- W2967800086 hasConcept C136229726 @default.
- W2967800086 hasConcept C143409427 @default.
- W2967800086 hasConcept C149550507 @default.
- W2967800086 hasConcept C150903083 @default.
- W2967800086 hasConcept C151730666 @default.
- W2967800086 hasConcept C192562407 @default.