Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967804963> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2967804963 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2019Cooperative deep learning inversion: Seismic-constrained CSEM inversion for salt delineationAuthors: Seokmin OhKyubo NohDaeung YoonSoon JeeJoongmoo ByunSeokmin OhRISE.ML, Hanyang UniversitySearch for more papers by this author, Kyubo NohRISE.ML, Hanyang UniversitySearch for more papers by this author, Daeung YoonRISE.ML, Hanyang UniversitySearch for more papers by this author, Soon JeeRISE.ML, Hanyang UniversitySearch for more papers by this author, and Joongmoo ByunRISE.ML, Hanyang UniversitySearch for more papers by this authorhttps://doi.org/10.1190/segam2019-3208029.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractSalt structure imaging is one of the most important problems in the field of hydrocarbon exploration. To resolve this issue, the integration of diverse geophysical data has emerged. In this study, we proposed the cooperative inversion with seismic and controlled-source electromagnetic (CSEM) data based on the supervised deep learning (DL) technique for precise salt delineation. CSEM data, which are effective in distinguishing a salt body with high electrical resistivity from the surrounding media, were used as the data of the inversion, and a high-resolution information derived from seismic data was applied as the constraint. To combine the seismic constraint with CSEM data, the modified UNet was adopted as an inversion operator based on DL. For training the DL model based on the network, resistivity models, including a salt body with arbitrary shape and size, and the corresponding CSEM data calculated through numerical modeling were generated and used as the label and input data, respectively. In addition, the seismic constraints, which were supposed to be obtained from the seismic image, were provided to the DL model in the training phase. Finally, we applied the optimum model to the test data acquired using the modified SEAM model. Test results demonstrated that the integration of seismic constraint leads to enhanced delineation of the salt body by providing definite upper boundary. This study has presented the promising potential of DL inversion to integrate multiple geophysical data.Presentation Date: Tuesday, September 17, 2019Session Start Time: 1:50 PMPresentation Time: 2:40 PMLocation: 225CPresentation Type: OralKeywords: electromagnetics, machine learning, inversion, salt, resistivityPermalink: https://doi.org/10.1190/segam2019-3208029.1FiguresReferencesRelatedDetailsCited byJoint 3D inversion of gravity and magnetic data using deep learning neural networksNanyu Wei, Dikun Yang, Zhigang Wang, and Yao Lu15 August 2022Monitoring the integrity of steel well casings using electrical data on the surfaceYinchu Li and Dikun Yang30 December 2020Imaging of steel casing’s conductivity using surface electrical data and a deep learning approachYinchu Li and Dikun Yang30 September 2020Deep learning joint inversion of seismic and electromagnetic data for salt reconstructionYen Sun, Bertrand Denel, Norman Daril, Lory Evano, Paul Williamson, and Mauricio Araya-Polo30 September 2020Cooperative deep learning inversion of controlled-source electromagnetic data for salt delineationSeokmin Oh, Kyubo Noh, Soon Jee Seol, and Joongmoo Byun10 June 2020 | GEOPHYSICS, Vol. 85, No. 4 SEG Technical Program Expanded Abstracts 2019ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2019 Pages: 5407 publication data© 2019 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 10 Aug 2019 CITATION INFORMATION Seokmin Oh, Kyubo Noh, Daeung Yoon, Soon Jee Seol, and Joongmoo Byun, (2019), Cooperative deep learning inversion: Seismic-constrained CSEM inversion for salt delineation, SEG Technical Program Expanded Abstracts : 1055-1059. https://doi.org/10.1190/segam2019-3208029.1 Plain-Language Summary Keywordselectromagneticsmachine learninginversionsaltresistivityPDF DownloadLoading ..." @default.
- W2967804963 created "2019-08-22" @default.
- W2967804963 creator A5013644671 @default.
- W2967804963 creator A5016273431 @default.
- W2967804963 creator A5019879030 @default.
- W2967804963 creator A5040886739 @default.
- W2967804963 creator A5063529811 @default.
- W2967804963 date "2019-08-10" @default.
- W2967804963 modified "2023-09-25" @default.
- W2967804963 title "Cooperative deep learning inversion: Seismic-constrained CSEM inversion for salt delineation" @default.
- W2967804963 cites W1551720189 @default.
- W2967804963 cites W1901129140 @default.
- W2967804963 cites W1903029394 @default.
- W2967804963 cites W1964416421 @default.
- W2967804963 cites W1967409080 @default.
- W2967804963 cites W2066339093 @default.
- W2967804963 cites W2115957863 @default.
- W2967804963 cites W2140554217 @default.
- W2967804963 cites W2156852680 @default.
- W2967804963 cites W2157038075 @default.
- W2967804963 cites W2225369830 @default.
- W2967804963 cites W2312345733 @default.
- W2967804963 cites W2504830112 @default.
- W2967804963 cites W2516559761 @default.
- W2967804963 cites W2776585113 @default.
- W2967804963 cites W2799289108 @default.
- W2967804963 cites W2891713389 @default.
- W2967804963 cites W2899810604 @default.
- W2967804963 cites W2911289613 @default.
- W2967804963 doi "https://doi.org/10.1190/segam2019-3208029.1" @default.
- W2967804963 hasPublicationYear "2019" @default.
- W2967804963 type Work @default.
- W2967804963 sameAs 2967804963 @default.
- W2967804963 citedByCount "4" @default.
- W2967804963 countsByYear W29678049632020 @default.
- W2967804963 countsByYear W29678049632022 @default.
- W2967804963 crossrefType "proceedings-article" @default.
- W2967804963 hasAuthorship W2967804963A5013644671 @default.
- W2967804963 hasAuthorship W2967804963A5016273431 @default.
- W2967804963 hasAuthorship W2967804963A5019879030 @default.
- W2967804963 hasAuthorship W2967804963A5040886739 @default.
- W2967804963 hasAuthorship W2967804963A5063529811 @default.
- W2967804963 hasConcept C11413529 @default.
- W2967804963 hasConcept C121332964 @default.
- W2967804963 hasConcept C127313418 @default.
- W2967804963 hasConcept C127413603 @default.
- W2967804963 hasConcept C1276947 @default.
- W2967804963 hasConcept C159737794 @default.
- W2967804963 hasConcept C165205528 @default.
- W2967804963 hasConcept C1893757 @default.
- W2967804963 hasConcept C2776036281 @default.
- W2967804963 hasConcept C39267094 @default.
- W2967804963 hasConcept C41008148 @default.
- W2967804963 hasConcept C77928131 @default.
- W2967804963 hasConcept C78519656 @default.
- W2967804963 hasConcept C8058405 @default.
- W2967804963 hasConceptScore W2967804963C11413529 @default.
- W2967804963 hasConceptScore W2967804963C121332964 @default.
- W2967804963 hasConceptScore W2967804963C127313418 @default.
- W2967804963 hasConceptScore W2967804963C127413603 @default.
- W2967804963 hasConceptScore W2967804963C1276947 @default.
- W2967804963 hasConceptScore W2967804963C159737794 @default.
- W2967804963 hasConceptScore W2967804963C165205528 @default.
- W2967804963 hasConceptScore W2967804963C1893757 @default.
- W2967804963 hasConceptScore W2967804963C2776036281 @default.
- W2967804963 hasConceptScore W2967804963C39267094 @default.
- W2967804963 hasConceptScore W2967804963C41008148 @default.
- W2967804963 hasConceptScore W2967804963C77928131 @default.
- W2967804963 hasConceptScore W2967804963C78519656 @default.
- W2967804963 hasConceptScore W2967804963C8058405 @default.
- W2967804963 hasLocation W29678049631 @default.
- W2967804963 hasOpenAccess W2967804963 @default.
- W2967804963 hasPrimaryLocation W29678049631 @default.
- W2967804963 hasRelatedWork W2031573214 @default.
- W2967804963 hasRelatedWork W2092739438 @default.
- W2967804963 hasRelatedWork W2313888560 @default.
- W2967804963 hasRelatedWork W2323872549 @default.
- W2967804963 hasRelatedWork W2371527909 @default.
- W2967804963 hasRelatedWork W2521857467 @default.
- W2967804963 hasRelatedWork W2807725884 @default.
- W2967804963 hasRelatedWork W3036915269 @default.
- W2967804963 hasRelatedWork W3179739911 @default.
- W2967804963 hasRelatedWork W4255618881 @default.
- W2967804963 isParatext "false" @default.
- W2967804963 isRetracted "false" @default.
- W2967804963 magId "2967804963" @default.
- W2967804963 workType "article" @default.