Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967842289> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2967842289 abstract "The data collected by the wireless sensor nodes often has some spatial or temporal redundancy, and the redundant data impose unnecessary burdens on both the nodes and networks. Data prediction is helpful to improve data quality and reduce the unnecessary data transmission. However, the current data prediction methods of wireless sensor networks seldom consider how to utilize the spatial-temporal correlation among the sensory data. This paper has proposed a new data prediction method multi-node multi-feature (MNMF) based on bidirectional long short-term memory (LSTM) network. Firstly, the data quality is improved by quartile method and wavelet threshold denoising. Then, the bidirectional LSTM network is used to extract and learn the abstract features of sensory data. Finally, the abstract features are used in the data prediction by adopting the merge layer of the neural network. The experimental results show that the proposed MNMF model has better performance compared with the other methods in many evaluation indicators." @default.
- W2967842289 created "2019-08-22" @default.
- W2967842289 creator A5010494139 @default.
- W2967842289 creator A5016735112 @default.
- W2967842289 creator A5026378743 @default.
- W2967842289 creator A5036420194 @default.
- W2967842289 creator A5089753572 @default.
- W2967842289 date "2019-08-13" @default.
- W2967842289 modified "2023-10-15" @default.
- W2967842289 title "Data prediction model in wireless sensor networks based on bidirectional LSTM" @default.
- W2967842289 cites W1689711448 @default.
- W2967842289 cites W1843644805 @default.
- W2967842289 cites W2042125329 @default.
- W2967842289 cites W2076954624 @default.
- W2967842289 cites W2083835467 @default.
- W2967842289 cites W2100766019 @default.
- W2967842289 cites W2148140427 @default.
- W2967842289 cites W2165991108 @default.
- W2967842289 cites W220187059 @default.
- W2967842289 cites W2274880506 @default.
- W2967842289 cites W2319766789 @default.
- W2967842289 cites W2587373669 @default.
- W2967842289 cites W2754051771 @default.
- W2967842289 cites W2802496958 @default.
- W2967842289 cites W2922344558 @default.
- W2967842289 cites W3124247219 @default.
- W2967842289 doi "https://doi.org/10.1186/s13638-019-1511-4" @default.
- W2967842289 hasPublicationYear "2019" @default.
- W2967842289 type Work @default.
- W2967842289 sameAs 2967842289 @default.
- W2967842289 citedByCount "51" @default.
- W2967842289 countsByYear W29678422892020 @default.
- W2967842289 countsByYear W29678422892021 @default.
- W2967842289 countsByYear W29678422892022 @default.
- W2967842289 countsByYear W29678422892023 @default.
- W2967842289 crossrefType "journal-article" @default.
- W2967842289 hasAuthorship W2967842289A5010494139 @default.
- W2967842289 hasAuthorship W2967842289A5016735112 @default.
- W2967842289 hasAuthorship W2967842289A5026378743 @default.
- W2967842289 hasAuthorship W2967842289A5036420194 @default.
- W2967842289 hasAuthorship W2967842289A5089753572 @default.
- W2967842289 hasBestOaLocation W29678422891 @default.
- W2967842289 hasConcept C111919701 @default.
- W2967842289 hasConcept C124101348 @default.
- W2967842289 hasConcept C152124472 @default.
- W2967842289 hasConcept C154945302 @default.
- W2967842289 hasConcept C197129107 @default.
- W2967842289 hasConcept C23123220 @default.
- W2967842289 hasConcept C24590314 @default.
- W2967842289 hasConcept C31258907 @default.
- W2967842289 hasConcept C41008148 @default.
- W2967842289 hasConcept C50644808 @default.
- W2967842289 hasConcept C7545210 @default.
- W2967842289 hasConcept C79403827 @default.
- W2967842289 hasConceptScore W2967842289C111919701 @default.
- W2967842289 hasConceptScore W2967842289C124101348 @default.
- W2967842289 hasConceptScore W2967842289C152124472 @default.
- W2967842289 hasConceptScore W2967842289C154945302 @default.
- W2967842289 hasConceptScore W2967842289C197129107 @default.
- W2967842289 hasConceptScore W2967842289C23123220 @default.
- W2967842289 hasConceptScore W2967842289C24590314 @default.
- W2967842289 hasConceptScore W2967842289C31258907 @default.
- W2967842289 hasConceptScore W2967842289C41008148 @default.
- W2967842289 hasConceptScore W2967842289C50644808 @default.
- W2967842289 hasConceptScore W2967842289C7545210 @default.
- W2967842289 hasConceptScore W2967842289C79403827 @default.
- W2967842289 hasFunder F4320321001 @default.
- W2967842289 hasFunder F4320321878 @default.
- W2967842289 hasIssue "1" @default.
- W2967842289 hasLocation W29678422891 @default.
- W2967842289 hasOpenAccess W2967842289 @default.
- W2967842289 hasPrimaryLocation W29678422891 @default.
- W2967842289 hasRelatedWork W2002428578 @default.
- W2967842289 hasRelatedWork W2018406690 @default.
- W2967842289 hasRelatedWork W2057601146 @default.
- W2967842289 hasRelatedWork W2057691131 @default.
- W2967842289 hasRelatedWork W2072332896 @default.
- W2967842289 hasRelatedWork W2539809701 @default.
- W2967842289 hasRelatedWork W2897258045 @default.
- W2967842289 hasRelatedWork W2951748633 @default.
- W2967842289 hasRelatedWork W2952039693 @default.
- W2967842289 hasRelatedWork W4292309272 @default.
- W2967842289 hasVolume "2019" @default.
- W2967842289 isParatext "false" @default.
- W2967842289 isRetracted "false" @default.
- W2967842289 magId "2967842289" @default.
- W2967842289 workType "article" @default.