Matches in SemOpenAlex for { <https://semopenalex.org/work/W2967844557> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2967844557 abstract "Omics data are normally high dimensional with large number of molecular features and relatively small number of available samples with clinical labels. The “curse of dimensionality” makes it challenging to train a machine learning model using high dimensional omics data like DNA methylation and gene expression profiles. Here we propose an end-to-end deep learning model called OmiVAE to extract low dimensional features and classify samples from multi-omics data. OmiVAE combines the basic structure of variational autoencoders with a classifier to achieve task-oriented feature extraction and multi-class classification. The training procedure of OmiVAE is comprised of an unsupervised phase and a supervised phase. During the unsupervised phase, a hierarchical cluster structure of samples can be automatically formed without the need for labels. And in the supervised phase, OmiVAE achieved an average accuracy of 97.49% after 10-fold cross-validation among 33 tumour types and normal samples, which shows better performance than existing methods. The integrated model learned from multi-omics datasets outperformed those using only one type of omics data, which indicates that the complementary information from different omics datatypes provides useful insights for biomedical tasks like cancer classification." @default.
- W2967844557 created "2019-08-22" @default.
- W2967844557 creator A5015055434 @default.
- W2967844557 creator A5018266083 @default.
- W2967844557 creator A5045081171 @default.
- W2967844557 creator A5046409585 @default.
- W2967844557 creator A5055486769 @default.
- W2967844557 creator A5063880073 @default.
- W2967844557 date "2019-11-01" @default.
- W2967844557 modified "2023-10-15" @default.
- W2967844557 title "Integrated Multi-omics Analysis Using Variational Autoencoders: Application to Pan-cancer Classification" @default.
- W2967844557 cites W2156527837 @default.
- W2967844557 cites W2158485828 @default.
- W2967844557 cites W2724430069 @default.
- W2967844557 cites W2787816121 @default.
- W2967844557 cites W2817817898 @default.
- W2967844557 cites W2919115771 @default.
- W2967844557 cites W2951209146 @default.
- W2967844557 cites W2963517668 @default.
- W2967844557 cites W2964236544 @default.
- W2967844557 doi "https://doi.org/10.1109/bibm47256.2019.8983228" @default.
- W2967844557 hasPublicationYear "2019" @default.
- W2967844557 type Work @default.
- W2967844557 sameAs 2967844557 @default.
- W2967844557 citedByCount "27" @default.
- W2967844557 countsByYear W29678445572020 @default.
- W2967844557 countsByYear W29678445572021 @default.
- W2967844557 countsByYear W29678445572022 @default.
- W2967844557 countsByYear W29678445572023 @default.
- W2967844557 crossrefType "proceedings-article" @default.
- W2967844557 hasAuthorship W2967844557A5015055434 @default.
- W2967844557 hasAuthorship W2967844557A5018266083 @default.
- W2967844557 hasAuthorship W2967844557A5045081171 @default.
- W2967844557 hasAuthorship W2967844557A5046409585 @default.
- W2967844557 hasAuthorship W2967844557A5055486769 @default.
- W2967844557 hasAuthorship W2967844557A5063880073 @default.
- W2967844557 hasBestOaLocation W29678445572 @default.
- W2967844557 hasConcept C111030470 @default.
- W2967844557 hasConcept C119857082 @default.
- W2967844557 hasConcept C124101348 @default.
- W2967844557 hasConcept C136389625 @default.
- W2967844557 hasConcept C153180895 @default.
- W2967844557 hasConcept C154945302 @default.
- W2967844557 hasConcept C157585117 @default.
- W2967844557 hasConcept C41008148 @default.
- W2967844557 hasConcept C50644808 @default.
- W2967844557 hasConcept C52622490 @default.
- W2967844557 hasConcept C60644358 @default.
- W2967844557 hasConcept C86803240 @default.
- W2967844557 hasConcept C95623464 @default.
- W2967844557 hasConceptScore W2967844557C111030470 @default.
- W2967844557 hasConceptScore W2967844557C119857082 @default.
- W2967844557 hasConceptScore W2967844557C124101348 @default.
- W2967844557 hasConceptScore W2967844557C136389625 @default.
- W2967844557 hasConceptScore W2967844557C153180895 @default.
- W2967844557 hasConceptScore W2967844557C154945302 @default.
- W2967844557 hasConceptScore W2967844557C157585117 @default.
- W2967844557 hasConceptScore W2967844557C41008148 @default.
- W2967844557 hasConceptScore W2967844557C50644808 @default.
- W2967844557 hasConceptScore W2967844557C52622490 @default.
- W2967844557 hasConceptScore W2967844557C60644358 @default.
- W2967844557 hasConceptScore W2967844557C86803240 @default.
- W2967844557 hasConceptScore W2967844557C95623464 @default.
- W2967844557 hasLocation W29678445571 @default.
- W2967844557 hasLocation W29678445572 @default.
- W2967844557 hasOpenAccess W2967844557 @default.
- W2967844557 hasPrimaryLocation W29678445571 @default.
- W2967844557 hasRelatedWork W106004901 @default.
- W2967844557 hasRelatedWork W177137871 @default.
- W2967844557 hasRelatedWork W2170062176 @default.
- W2967844557 hasRelatedWork W2355801475 @default.
- W2967844557 hasRelatedWork W2561617217 @default.
- W2967844557 hasRelatedWork W3097449145 @default.
- W2967844557 hasRelatedWork W4206659427 @default.
- W2967844557 hasRelatedWork W4292302930 @default.
- W2967844557 hasRelatedWork W4294811468 @default.
- W2967844557 hasRelatedWork W4296209631 @default.
- W2967844557 isParatext "false" @default.
- W2967844557 isRetracted "false" @default.
- W2967844557 magId "2967844557" @default.
- W2967844557 workType "article" @default.