Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968002145> ?p ?o ?g. }
- W2968002145 endingPage "1906" @default.
- W2968002145 startingPage "1906" @default.
- W2968002145 abstract "Accurately estimating aboveground biomass (AGB) is important in many applications, including monitoring carbon stocks, investigating deforestation and forest degradation, and designing sustainable forest management strategies. Although lidar provides critical three-dimensional forest structure information for estimating AGB, acquiring comprehensive lidar coverage is often cost prohibitive. This research focused on developing a lidar sampling framework to support AGB estimation from Landsat images. Two sampling strategies, systematic and classification-based, were tested and compared. The proposed strategies were implemented over a temperate forest study site in northern New York State and the processes were then validated at a similar site located in central New York State. Our results demonstrated that while the inclusion of lidar data using systematic or classification-based sampling supports AGB estimation, the systematic sampling selection method was highly dependent on site conditions and had higher accuracy variability. Of the 12 systematic sampling plans, R2 values ranged from 0.14 to 0.41 and plot root mean square error (RMSE) ranged from 84.2 to 93.9 Mg ha−1. The classification-based sampling outperformed 75% of the systematic sampling strategies at the primary site with R2 of 0.26 and RMSE of 70.1 Mg ha−1. The classification-based lidar sampling strategy was relatively easy to apply and was readily transferable to a new study site. Adopting this method at the validation site, the classification-based sampling also worked effectively, with an R2 of 0.40 and an RMSE of 108.2 Mg ha−1 compared to the full lidar coverage model with an R2 of 0.58 and an RMSE of 96.0 Mg ha−1. This study evaluated different lidar sample selection methods to identify an efficient and effective approach to reduce the volume and cost of lidar acquisitions. The forest type classification-based sampling method described in this study could facilitate cost-effective lidar data collection in future studies." @default.
- W2968002145 created "2019-08-22" @default.
- W2968002145 creator A5012443982 @default.
- W2968002145 creator A5034853467 @default.
- W2968002145 creator A5086947334 @default.
- W2968002145 date "2019-08-15" @default.
- W2968002145 modified "2023-10-05" @default.
- W2968002145 title "Airborne Lidar Sampling Strategies to Enhance Forest Aboveground Biomass Estimation from Landsat Imagery" @default.
- W2968002145 cites W1483493965 @default.
- W2968002145 cites W1964217023 @default.
- W2968002145 cites W1965710338 @default.
- W2968002145 cites W1971855597 @default.
- W2968002145 cites W1978642993 @default.
- W2968002145 cites W1981855554 @default.
- W2968002145 cites W1986513773 @default.
- W2968002145 cites W1988821780 @default.
- W2968002145 cites W2000102737 @default.
- W2968002145 cites W2001618165 @default.
- W2968002145 cites W2009451364 @default.
- W2968002145 cites W2017131791 @default.
- W2968002145 cites W2021623445 @default.
- W2968002145 cites W2055137896 @default.
- W2968002145 cites W2055365932 @default.
- W2968002145 cites W2056968878 @default.
- W2968002145 cites W2063623478 @default.
- W2968002145 cites W2065925762 @default.
- W2968002145 cites W2077799957 @default.
- W2968002145 cites W2089441588 @default.
- W2968002145 cites W2089450719 @default.
- W2968002145 cites W2090166704 @default.
- W2968002145 cites W2112144785 @default.
- W2968002145 cites W2133145071 @default.
- W2968002145 cites W2133344311 @default.
- W2968002145 cites W2134870022 @default.
- W2968002145 cites W2142939943 @default.
- W2968002145 cites W2145167036 @default.
- W2968002145 cites W2159334193 @default.
- W2968002145 cites W2159944858 @default.
- W2968002145 cites W2171747502 @default.
- W2968002145 cites W2406402377 @default.
- W2968002145 cites W2416310637 @default.
- W2968002145 cites W2460368378 @default.
- W2968002145 cites W2470403126 @default.
- W2968002145 cites W2566443599 @default.
- W2968002145 cites W2593456876 @default.
- W2968002145 cites W2596636264 @default.
- W2968002145 cites W2616493255 @default.
- W2968002145 cites W2624045785 @default.
- W2968002145 cites W263478603 @default.
- W2968002145 cites W2734691593 @default.
- W2968002145 cites W2745081071 @default.
- W2968002145 cites W2770654566 @default.
- W2968002145 cites W2774950400 @default.
- W2968002145 cites W2790602384 @default.
- W2968002145 cites W2801032191 @default.
- W2968002145 cites W2801570683 @default.
- W2968002145 cites W2804933989 @default.
- W2968002145 cites W2902726580 @default.
- W2968002145 cites W2906301693 @default.
- W2968002145 cites W2907738775 @default.
- W2968002145 cites W2909674845 @default.
- W2968002145 cites W4242564854 @default.
- W2968002145 doi "https://doi.org/10.3390/rs11161906" @default.
- W2968002145 hasPublicationYear "2019" @default.
- W2968002145 type Work @default.
- W2968002145 sameAs 2968002145 @default.
- W2968002145 citedByCount "7" @default.
- W2968002145 countsByYear W29680021452021 @default.
- W2968002145 countsByYear W29680021452022 @default.
- W2968002145 countsByYear W29680021452023 @default.
- W2968002145 crossrefType "journal-article" @default.
- W2968002145 hasAuthorship W2968002145A5012443982 @default.
- W2968002145 hasAuthorship W2968002145A5034853467 @default.
- W2968002145 hasAuthorship W2968002145A5086947334 @default.
- W2968002145 hasBestOaLocation W29680021451 @default.
- W2968002145 hasConcept C105795698 @default.
- W2968002145 hasConcept C106131492 @default.
- W2968002145 hasConcept C111368507 @default.
- W2968002145 hasConcept C115540264 @default.
- W2968002145 hasConcept C127313418 @default.
- W2968002145 hasConcept C139945424 @default.
- W2968002145 hasConcept C140779682 @default.
- W2968002145 hasConcept C144024400 @default.
- W2968002145 hasConcept C149923435 @default.
- W2968002145 hasConcept C192489979 @default.
- W2968002145 hasConcept C205649164 @default.
- W2968002145 hasConcept C2908647359 @default.
- W2968002145 hasConcept C31972630 @default.
- W2968002145 hasConcept C33923547 @default.
- W2968002145 hasConcept C39432304 @default.
- W2968002145 hasConcept C41008148 @default.
- W2968002145 hasConcept C49898467 @default.
- W2968002145 hasConcept C51399673 @default.
- W2968002145 hasConcept C62649853 @default.
- W2968002145 hasConcept C75373757 @default.
- W2968002145 hasConcept C91354502 @default.
- W2968002145 hasConcept C97137747 @default.
- W2968002145 hasConceptScore W2968002145C105795698 @default.