Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968002694> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2968002694 endingPage "196" @default.
- W2968002694 startingPage "157" @default.
- W2968002694 abstract "The application of computer-aided algorithms for disease diagnosis and treatment is gaining prominent in the past years, and the role of machine learning algorithms is inevitable. This chapter focuses on the segmentation of liver and anomalies like tumor and cyst from abdomen CT images using deep learning convolution neural network (DLCNN) and classification of tumor stages by fuzzy support vector machine (FSVM). The segmentation result of DLCNN outperforms the backpropagation neural network, group method data handling neural network, and decision tree algorithm. The FSVM-based tumor classification results were superior when compared with classical SVM. This chapter focuses on the following: (i) machine learning algorithms for classification and segmentation of medical images, (ii) role of DLCNN in medical image segmentation, (iii) role of FSVM in anomalies classification, and (iv) validation of segmentation and classification results by performance metrics. The simulation results are generated in Matlab 2015a and Java and validated on real-time abdomen CT images." @default.
- W2968002694 created "2019-08-22" @default.
- W2968002694 creator A5002233877 @default.
- W2968002694 creator A5027664187 @default.
- W2968002694 creator A5029265278 @default.
- W2968002694 creator A5049606818 @default.
- W2968002694 creator A5079727462 @default.
- W2968002694 date "2019-08-09" @default.
- W2968002694 modified "2023-09-25" @default.
- W2968002694 title "Segmentation of Anomalies in Abdomen CT Images by Convolution Neural Network and Classification by Fuzzy Support Vector Machine" @default.
- W2968002694 cites W1884191083 @default.
- W2968002694 cites W1965997090 @default.
- W2968002694 cites W1987368543 @default.
- W2968002694 cites W1989846668 @default.
- W2968002694 cites W2002016471 @default.
- W2968002694 cites W2011430131 @default.
- W2968002694 cites W2056597368 @default.
- W2968002694 cites W2058915639 @default.
- W2968002694 cites W2071970250 @default.
- W2968002694 cites W2076063813 @default.
- W2968002694 cites W2096058973 @default.
- W2968002694 cites W2113681917 @default.
- W2968002694 cites W2116462678 @default.
- W2968002694 cites W2117695123 @default.
- W2968002694 cites W2124386567 @default.
- W2968002694 cites W2127644182 @default.
- W2968002694 cites W2139428734 @default.
- W2968002694 cites W2142248489 @default.
- W2968002694 cites W2158640358 @default.
- W2968002694 cites W2158670896 @default.
- W2968002694 cites W2161663128 @default.
- W2968002694 cites W2547085797 @default.
- W2968002694 cites W2592929672 @default.
- W2968002694 cites W2730803689 @default.
- W2968002694 cites W2757509933 @default.
- W2968002694 cites W2774841810 @default.
- W2968002694 cites W2791145595 @default.
- W2968002694 cites W2808543030 @default.
- W2968002694 cites W2883158673 @default.
- W2968002694 doi "https://doi.org/10.1007/978-981-13-8930-6_7" @default.
- W2968002694 hasPublicationYear "2019" @default.
- W2968002694 type Work @default.
- W2968002694 sameAs 2968002694 @default.
- W2968002694 citedByCount "3" @default.
- W2968002694 countsByYear W29680026942020 @default.
- W2968002694 countsByYear W29680026942021 @default.
- W2968002694 countsByYear W29680026942023 @default.
- W2968002694 crossrefType "book-chapter" @default.
- W2968002694 hasAuthorship W2968002694A5002233877 @default.
- W2968002694 hasAuthorship W2968002694A5027664187 @default.
- W2968002694 hasAuthorship W2968002694A5029265278 @default.
- W2968002694 hasAuthorship W2968002694A5049606818 @default.
- W2968002694 hasAuthorship W2968002694A5079727462 @default.
- W2968002694 hasConcept C12267149 @default.
- W2968002694 hasConcept C153180895 @default.
- W2968002694 hasConcept C154945302 @default.
- W2968002694 hasConcept C41008148 @default.
- W2968002694 hasConcept C45347329 @default.
- W2968002694 hasConcept C50644808 @default.
- W2968002694 hasConcept C58166 @default.
- W2968002694 hasConcept C81363708 @default.
- W2968002694 hasConcept C89600930 @default.
- W2968002694 hasConceptScore W2968002694C12267149 @default.
- W2968002694 hasConceptScore W2968002694C153180895 @default.
- W2968002694 hasConceptScore W2968002694C154945302 @default.
- W2968002694 hasConceptScore W2968002694C41008148 @default.
- W2968002694 hasConceptScore W2968002694C45347329 @default.
- W2968002694 hasConceptScore W2968002694C50644808 @default.
- W2968002694 hasConceptScore W2968002694C58166 @default.
- W2968002694 hasConceptScore W2968002694C81363708 @default.
- W2968002694 hasConceptScore W2968002694C89600930 @default.
- W2968002694 hasLocation W29680026941 @default.
- W2968002694 hasOpenAccess W2968002694 @default.
- W2968002694 hasPrimaryLocation W29680026941 @default.
- W2968002694 hasRelatedWork W2041399278 @default.
- W2968002694 hasRelatedWork W2099369243 @default.
- W2968002694 hasRelatedWork W2120008580 @default.
- W2968002694 hasRelatedWork W2754350655 @default.
- W2968002694 hasRelatedWork W2996933976 @default.
- W2968002694 hasRelatedWork W3095523211 @default.
- W2968002694 hasRelatedWork W3193301557 @default.
- W2968002694 hasRelatedWork W3208266890 @default.
- W2968002694 hasRelatedWork W4285503465 @default.
- W2968002694 hasRelatedWork W2345184372 @default.
- W2968002694 isParatext "false" @default.
- W2968002694 isRetracted "false" @default.
- W2968002694 magId "2968002694" @default.
- W2968002694 workType "book-chapter" @default.