Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968003746> ?p ?o ?g. }
- W2968003746 endingPage "65" @default.
- W2968003746 startingPage "44" @default.
- W2968003746 abstract "Abstract Evaluating reservoir storage and percolation capacities, which are closely associated with pore morphology and connectivity, is significant for the exploration and exploitation of oil and gas fields. However, ultradeep carbonate gas reservoirs have extremely high heterogeneity and complexity compared to other relatively shallow reservoirs. Therefore, investigations into all aspects of ultradeep carbonate face enormous challenges. To the best of our knowledge, no systematic study on the pore structure characteristics of ultradeep carbonate gas reservoirs has been conducted to date. In this paper, the pore structure characteristics and their effects on the gas storage and percolation capacities of the Deng IV Member gas reservoir were investigated using conventional petrophysical measurements, casting thin section analysis, scanning electron microscopy (SEM), high pressure mercury intrusion (HPMI) tests, and multiscale CT scanning analysis. The results show that the lithology of the Deng IV Member reservoir is dominated by algal clotted dolomite, algal stromatolite dolomite and algal doloarenite. The conventional petrophysical measurements indicate that the average porosity and permeability are 3.91% and 1.02 mD, respectively. However, the high porosity (8-4%) and high permeability (10–10,000 mD) intervals are developed locally. The casting thin sections, SEM and two-dimensional CT analyses identify six main types of reservoir spaces in the Deng IV Member: interparticle dissolution pores, intercrystal dissolution pores, fenestriform cavities, dissolution cavities, structural fractures and dissolution fractures. Furthermore, three types of throats, that is, necking, tubular and lamellar, were also detected. Four types of reservoirs, namely, matrix type, pore type, cavity type and fracture-cavity type, were classified according to the comprehensive analysis of HPMI data and curves. Three-dimensional pore throat network topologies were reconstructed for four types of representative core samples based on the multiscale CT scanning data and “maximum-ball” method. The distribution characteristics of pore throat radii, volumes and coordination numbers reveal the following: the reservoir space of fracture-cavity type is dominated by cavities and multiscale pore throats with the best pore-throat connectivity; the reservoir space of cavity type is primarily controlled by cavities and large-scale pore throats with moderate connectivity; the reservoir space of pore type comprises multiscale pore throats with moderate connectivity; and most areas of matrix type reservoir are occupied by rock matrix, and the pore-throat connectivity is the worst. In conclusion, the development of fractures and bedding cavities considerably improves the reservoir percolation capacity, and the development of cavities is an important supplement to the reservoir storage capacity. The reasonable combination of cavities and fractures is the basis for the efficient development of ultradeep carbonate gas reservoirs." @default.
- W2968003746 created "2019-08-22" @default.
- W2968003746 creator A5012992454 @default.
- W2968003746 creator A5020818460 @default.
- W2968003746 creator A5045129199 @default.
- W2968003746 creator A5052024972 @default.
- W2968003746 creator A5058576876 @default.
- W2968003746 creator A5063350832 @default.
- W2968003746 date "2020-01-01" @default.
- W2968003746 modified "2023-09-28" @default.
- W2968003746 title "Pore structure characteristics of an ultradeep carbonate gas reservoir and their effects on gas storage and percolation capacities in the Deng IV member, Gaoshiti-Moxi Area, Sichuan Basin, SW China" @default.
- W2968003746 cites W1981964040 @default.
- W2968003746 cites W1986901595 @default.
- W2968003746 cites W1990055209 @default.
- W2968003746 cites W2009779662 @default.
- W2968003746 cites W2025697583 @default.
- W2968003746 cites W2029990466 @default.
- W2968003746 cites W2041310394 @default.
- W2968003746 cites W2049603955 @default.
- W2968003746 cites W2051253069 @default.
- W2968003746 cites W2064067876 @default.
- W2968003746 cites W2065321339 @default.
- W2968003746 cites W2066194230 @default.
- W2968003746 cites W2081892932 @default.
- W2968003746 cites W2084940867 @default.
- W2968003746 cites W2094271721 @default.
- W2968003746 cites W2136269858 @default.
- W2968003746 cites W2165356954 @default.
- W2968003746 cites W2193041727 @default.
- W2968003746 cites W2220315470 @default.
- W2968003746 cites W2249017681 @default.
- W2968003746 cites W2337217694 @default.
- W2968003746 cites W2344471090 @default.
- W2968003746 cites W2465380960 @default.
- W2968003746 cites W2520504205 @default.
- W2968003746 cites W2524646894 @default.
- W2968003746 cites W2585604990 @default.
- W2968003746 cites W2590066621 @default.
- W2968003746 cites W2601408001 @default.
- W2968003746 cites W2631349721 @default.
- W2968003746 cites W2726444018 @default.
- W2968003746 cites W2737176374 @default.
- W2968003746 cites W2742190088 @default.
- W2968003746 cites W2743149546 @default.
- W2968003746 cites W2751679631 @default.
- W2968003746 cites W2761455227 @default.
- W2968003746 cites W2765943033 @default.
- W2968003746 cites W2770570367 @default.
- W2968003746 cites W2771662131 @default.
- W2968003746 cites W2772482856 @default.
- W2968003746 cites W2783215881 @default.
- W2968003746 cites W2789647484 @default.
- W2968003746 cites W2791266034 @default.
- W2968003746 cites W2791282296 @default.
- W2968003746 cites W2793922815 @default.
- W2968003746 cites W2799528960 @default.
- W2968003746 cites W2883451126 @default.
- W2968003746 cites W2883571512 @default.
- W2968003746 cites W2885657211 @default.
- W2968003746 cites W2887918664 @default.
- W2968003746 cites W2888371783 @default.
- W2968003746 cites W2888541958 @default.
- W2968003746 cites W2897674569 @default.
- W2968003746 cites W2936832348 @default.
- W2968003746 doi "https://doi.org/10.1016/j.marpetgeo.2019.08.012" @default.
- W2968003746 hasPublicationYear "2020" @default.
- W2968003746 type Work @default.
- W2968003746 sameAs 2968003746 @default.
- W2968003746 citedByCount "43" @default.
- W2968003746 countsByYear W29680037462020 @default.
- W2968003746 countsByYear W29680037462021 @default.
- W2968003746 countsByYear W29680037462022 @default.
- W2968003746 countsByYear W29680037462023 @default.
- W2968003746 crossrefType "journal-article" @default.
- W2968003746 hasAuthorship W2968003746A5012992454 @default.
- W2968003746 hasAuthorship W2968003746A5020818460 @default.
- W2968003746 hasAuthorship W2968003746A5045129199 @default.
- W2968003746 hasAuthorship W2968003746A5052024972 @default.
- W2968003746 hasAuthorship W2968003746A5058576876 @default.
- W2968003746 hasAuthorship W2968003746A5063350832 @default.
- W2968003746 hasConcept C109007969 @default.
- W2968003746 hasConcept C114793014 @default.
- W2968003746 hasConcept C127313418 @default.
- W2968003746 hasConcept C169760540 @default.
- W2968003746 hasConcept C17409809 @default.
- W2968003746 hasConcept C191897082 @default.
- W2968003746 hasConcept C192562407 @default.
- W2968003746 hasConcept C199289684 @default.
- W2968003746 hasConcept C2780457167 @default.
- W2968003746 hasConcept C2780659211 @default.
- W2968003746 hasConcept C2993562611 @default.
- W2968003746 hasConcept C5900021 @default.
- W2968003746 hasConcept C86803240 @default.
- W2968003746 hasConceptScore W2968003746C109007969 @default.
- W2968003746 hasConceptScore W2968003746C114793014 @default.
- W2968003746 hasConceptScore W2968003746C127313418 @default.
- W2968003746 hasConceptScore W2968003746C169760540 @default.
- W2968003746 hasConceptScore W2968003746C17409809 @default.