Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968005124> ?p ?o ?g. }
- W2968005124 endingPage "1900" @default.
- W2968005124 startingPage "1900" @default.
- W2968005124 abstract "Previous studies have attempted to disaggregate census data into fine resolution with multisource remote sensing data considering the importance of fine-resolution population distribution in urban planning, environmental protection, resource allocation, and social economy. However, the lack of direct human activity information invariably restricts the accuracy of population mapping and reduces the credibility of the mapping process even when external facility distribution information is adopted. To address these problems, the present study proposed a novel population mapping method by combining International Space Station (ISS) photography nighttime light data, point of interest (POI) data, and location-based social media data. A similarity matching model, consisting of semantic and distance matching models, was established to integrate POI and social media data. Effective information was extracted from the integrated data through principal component analysis and then used along with road density information to train the random forest (RF) model. A comparison with WordPop data proved that our method can generate fine-resolution population distribution with higher accuracy ( R 2 = 0.91 ) than those of previous studies ( R 2 = 0.55 ). To illustrate the advantages of our method, we highlighted the limitations of previous methods that ignore social media data in handling residential regions with similar light intensity. We also discussed the performance of our method in adopting social media data, considering their characteristics, with different volumes and acquisition times. Results showed that social media data acquired between 19:00 and 8:00 with a volume of approximately 300,000 will help our method realize high accuracy with low computation burden. This study showed the great potential of combining social sensing data for disaggregating fine-resolution population." @default.
- W2968005124 created "2019-08-22" @default.
- W2968005124 creator A5033239420 @default.
- W2968005124 creator A5042282225 @default.
- W2968005124 creator A5071170542 @default.
- W2968005124 date "2019-08-14" @default.
- W2968005124 modified "2023-10-10" @default.
- W2968005124 title "Fine-Resolution Population Mapping from International Space Station Nighttime Photography and Multisource Social Sensing Data Based on Similarity Matching" @default.
- W2968005124 cites W1537088519 @default.
- W2968005124 cites W1828947848 @default.
- W2968005124 cites W1972917002 @default.
- W2968005124 cites W1973749534 @default.
- W2968005124 cites W1974849189 @default.
- W2968005124 cites W1987230720 @default.
- W2968005124 cites W1990964782 @default.
- W2968005124 cites W1991692910 @default.
- W2968005124 cites W1993151586 @default.
- W2968005124 cites W2012214861 @default.
- W2968005124 cites W2016943428 @default.
- W2968005124 cites W2022835328 @default.
- W2968005124 cites W2039350330 @default.
- W2968005124 cites W2039672094 @default.
- W2968005124 cites W2045225344 @default.
- W2968005124 cites W2051142949 @default.
- W2968005124 cites W2052458288 @default.
- W2968005124 cites W2053449386 @default.
- W2968005124 cites W2055651929 @default.
- W2968005124 cites W2055992762 @default.
- W2968005124 cites W2057442840 @default.
- W2968005124 cites W2061145869 @default.
- W2968005124 cites W2064636519 @default.
- W2968005124 cites W2069302583 @default.
- W2968005124 cites W2073553786 @default.
- W2968005124 cites W2074988323 @default.
- W2968005124 cites W2075290674 @default.
- W2968005124 cites W2089502471 @default.
- W2968005124 cites W2091793895 @default.
- W2968005124 cites W2102496954 @default.
- W2968005124 cites W2114068739 @default.
- W2968005124 cites W2122892105 @default.
- W2968005124 cites W2155416743 @default.
- W2968005124 cites W2202474462 @default.
- W2968005124 cites W2258222520 @default.
- W2968005124 cites W2261059368 @default.
- W2968005124 cites W2263825730 @default.
- W2968005124 cites W2299239789 @default.
- W2968005124 cites W2336759105 @default.
- W2968005124 cites W2397914484 @default.
- W2968005124 cites W2462180963 @default.
- W2968005124 cites W2462332352 @default.
- W2968005124 cites W2506999064 @default.
- W2968005124 cites W2618085769 @default.
- W2968005124 cites W2766517162 @default.
- W2968005124 cites W2778581938 @default.
- W2968005124 cites W2793186584 @default.
- W2968005124 cites W2805128649 @default.
- W2968005124 cites W2807693105 @default.
- W2968005124 cites W2809699585 @default.
- W2968005124 cites W2883688568 @default.
- W2968005124 cites W2890140875 @default.
- W2968005124 cites W2896720195 @default.
- W2968005124 cites W2905333671 @default.
- W2968005124 cites W2913691145 @default.
- W2968005124 cites W2921042072 @default.
- W2968005124 cites W2922103469 @default.
- W2968005124 cites W2937256180 @default.
- W2968005124 cites W4243723995 @default.
- W2968005124 cites W68132019 @default.
- W2968005124 doi "https://doi.org/10.3390/rs11161900" @default.
- W2968005124 hasPublicationYear "2019" @default.
- W2968005124 type Work @default.
- W2968005124 sameAs 2968005124 @default.
- W2968005124 citedByCount "17" @default.
- W2968005124 countsByYear W29680051242019 @default.
- W2968005124 countsByYear W29680051242020 @default.
- W2968005124 countsByYear W29680051242021 @default.
- W2968005124 countsByYear W29680051242022 @default.
- W2968005124 countsByYear W29680051242023 @default.
- W2968005124 crossrefType "journal-article" @default.
- W2968005124 hasAuthorship W2968005124A5033239420 @default.
- W2968005124 hasAuthorship W2968005124A5042282225 @default.
- W2968005124 hasAuthorship W2968005124A5071170542 @default.
- W2968005124 hasBestOaLocation W29680051241 @default.
- W2968005124 hasConcept C103278499 @default.
- W2968005124 hasConcept C105795698 @default.
- W2968005124 hasConcept C115961682 @default.
- W2968005124 hasConcept C124101348 @default.
- W2968005124 hasConcept C136764020 @default.
- W2968005124 hasConcept C144024400 @default.
- W2968005124 hasConcept C149923435 @default.
- W2968005124 hasConcept C150140777 @default.
- W2968005124 hasConcept C154945302 @default.
- W2968005124 hasConcept C165064840 @default.
- W2968005124 hasConcept C205649164 @default.
- W2968005124 hasConcept C23123220 @default.
- W2968005124 hasConcept C2908647359 @default.
- W2968005124 hasConcept C33923547 @default.
- W2968005124 hasConcept C41008148 @default.