Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968049891> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2968049891 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2019Multi-trace and multi-attribute analysis for first-break picking with the support vector machineAuthors: Xudong DuanJie ZhangXudong DuanUniversity of Science and Technology of China (USTC)Search for more papers by this author and Jie ZhangUniversity of Science and Technology of China (USTC)Search for more papers by this authorhttps://doi.org/10.1190/segam2019-3215554.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractMany algorithms have been proposed to automate the firstbreak picking, which, however, remains a challenging problem and still requires significant human efforts. We propose an SVM (support vector machine) method with multi-trace and multi-attribute analysis to improve the automatic picking. In this method, we still use some existing picking methods (e.g., short- and long-window ratios method) to obtain advanced attributes for training. Considering the substantial correlation in waveforms between adjacent traces, we also introduce three multi-trace attributes to incorporate spatial correlation constraints into our machine learning method. Due to the large similarity of data in the same project, the machine learning model needs to be trained on only a small amount of data but can be applied to infer most of the remaining data. We adopt the SVM technique in the training process to obtain a globally optimized model and introduce multi-trace constraints to refine picking results. We test our trained model on pseudosynthetic data generated by adding random Gaussian noise into high quality real data. The root-mean-square (RMS) picking error relative to ground truth ranges from 2.4 ms to 14 ms. We also apply our trained model to real data of dynamite sources and vibroseis sources, where the results demonstrate the effectiveness of the proposed method.Presentation Date: Wednesday, September 18, 2019Session Start Time: 9:20 AMPresentation Time: 11:25 AMLocation: Poster Station 2Presentation Type: PosterKeywords: machine learning, artificial intelligence, processing, statics, tomographyPermalink: https://doi.org/10.1190/segam2019-3215554.1FiguresReferencesRelatedDetailsCited byConvolution neural network application for first‐break picking for land seismic data28 June 2022 | Geophysical Prospecting, Vol. 70, No. 7Automatic first-arrival picking workflow by global path tracingDongliang Zhang, Tong W. Fei, Song Han, Constantine Tsingas, Yi Luo, and Hongwei Liu24 November 2021 | GEOPHYSICS, Vol. 87, No. 1First-Break Picking Classification Models Using Recurrent Neural Network15 December 2021First-arrival picking through fuzzy c-means and robust locally weighted regression16 July 2021 | Acta Geophysica, Vol. 69, No. 5VSP first arrival picking method based on Unet++ convolutional neural networkYuanzhong Chen, Guangmin Hu, Yating Wang, Xingmiao Yao, Gang Yu, Yanpeng Li, Rui Guo, Junjun Wu, and Jianhua Huang30 December 2020Automated arrival-time picking using a pixel-level networkYuanyuan Ma, Siyuan Cao, James W. Rector, and Zhishuai Zhang11 September 2020 | GEOPHYSICS, Vol. 85, No. 5 SEG Technical Program Expanded Abstracts 2019ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2019 Pages: 5407 publication data© 2019 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 10 Aug 2019 CITATION INFORMATION Xudong Duan and Jie Zhang, (2019), Multi-trace and multi-attribute analysis for first-break picking with the support vector machine, SEG Technical Program Expanded Abstracts : 2559-2563. https://doi.org/10.1190/segam2019-3215554.1 Plain-Language Summary Keywordsmachine learningartificial intelligenceprocessingstaticstomographyPDF DownloadLoading ..." @default.
- W2968049891 created "2019-08-22" @default.
- W2968049891 creator A5002342107 @default.
- W2968049891 creator A5024895894 @default.
- W2968049891 date "2019-08-10" @default.
- W2968049891 modified "2023-09-25" @default.
- W2968049891 title "Multi-trace and multi-attribute analysis for first-break picking with the support vector machine" @default.
- W2968049891 cites W1881291174 @default.
- W2968049891 cites W1990030993 @default.
- W2968049891 cites W2009681357 @default.
- W2968049891 cites W2025583962 @default.
- W2968049891 cites W2048812056 @default.
- W2968049891 cites W2067014477 @default.
- W2968049891 cites W2091121667 @default.
- W2968049891 cites W2116258620 @default.
- W2968049891 cites W2125471009 @default.
- W2968049891 cites W2133164188 @default.
- W2968049891 cites W2145747609 @default.
- W2968049891 cites W2153635508 @default.
- W2968049891 cites W2297444081 @default.
- W2968049891 cites W2314021747 @default.
- W2968049891 cites W2332320584 @default.
- W2968049891 cites W2528961483 @default.
- W2968049891 cites W2591535577 @default.
- W2968049891 cites W2781854221 @default.
- W2968049891 cites W2794417179 @default.
- W2968049891 cites W2823482656 @default.
- W2968049891 cites W2889600526 @default.
- W2968049891 cites W2890190462 @default.
- W2968049891 cites W2890222209 @default.
- W2968049891 cites W2897855544 @default.
- W2968049891 doi "https://doi.org/10.1190/segam2019-3215554.1" @default.
- W2968049891 hasPublicationYear "2019" @default.
- W2968049891 type Work @default.
- W2968049891 sameAs 2968049891 @default.
- W2968049891 citedByCount "8" @default.
- W2968049891 countsByYear W29680498912020 @default.
- W2968049891 countsByYear W29680498912021 @default.
- W2968049891 countsByYear W29680498912022 @default.
- W2968049891 countsByYear W29680498912023 @default.
- W2968049891 crossrefType "proceedings-article" @default.
- W2968049891 hasAuthorship W2968049891A5002342107 @default.
- W2968049891 hasAuthorship W2968049891A5024895894 @default.
- W2968049891 hasConcept C115961682 @default.
- W2968049891 hasConcept C119857082 @default.
- W2968049891 hasConcept C12267149 @default.
- W2968049891 hasConcept C124101348 @default.
- W2968049891 hasConcept C138885662 @default.
- W2968049891 hasConcept C153180895 @default.
- W2968049891 hasConcept C154945302 @default.
- W2968049891 hasConcept C169258074 @default.
- W2968049891 hasConcept C41008148 @default.
- W2968049891 hasConcept C41895202 @default.
- W2968049891 hasConcept C75291252 @default.
- W2968049891 hasConcept C99498987 @default.
- W2968049891 hasConceptScore W2968049891C115961682 @default.
- W2968049891 hasConceptScore W2968049891C119857082 @default.
- W2968049891 hasConceptScore W2968049891C12267149 @default.
- W2968049891 hasConceptScore W2968049891C124101348 @default.
- W2968049891 hasConceptScore W2968049891C138885662 @default.
- W2968049891 hasConceptScore W2968049891C153180895 @default.
- W2968049891 hasConceptScore W2968049891C154945302 @default.
- W2968049891 hasConceptScore W2968049891C169258074 @default.
- W2968049891 hasConceptScore W2968049891C41008148 @default.
- W2968049891 hasConceptScore W2968049891C41895202 @default.
- W2968049891 hasConceptScore W2968049891C75291252 @default.
- W2968049891 hasConceptScore W2968049891C99498987 @default.
- W2968049891 hasLocation W29680498911 @default.
- W2968049891 hasOpenAccess W2968049891 @default.
- W2968049891 hasPrimaryLocation W29680498911 @default.
- W2968049891 hasRelatedWork W2041399278 @default.
- W2968049891 hasRelatedWork W2136184105 @default.
- W2968049891 hasRelatedWork W2985924212 @default.
- W2968049891 hasRelatedWork W3013515612 @default.
- W2968049891 hasRelatedWork W3195168932 @default.
- W2968049891 hasRelatedWork W3195610867 @default.
- W2968049891 hasRelatedWork W4321636153 @default.
- W2968049891 hasRelatedWork W4377964522 @default.
- W2968049891 hasRelatedWork W2187500075 @default.
- W2968049891 hasRelatedWork W2345184372 @default.
- W2968049891 isParatext "false" @default.
- W2968049891 isRetracted "false" @default.
- W2968049891 magId "2968049891" @default.
- W2968049891 workType "article" @default.