Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968117006> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2968117006 abstract "To general people, it is more convenient to know weather condition at a specific location and particular time. However, current weather forecasting services offered by meteorological observation organizations only provide a wide-range or coarse-grained forecast. This research work tried to utilize historical weather observation data and machine learning (ML) techniques to build models enabling specific weather forecast. Different settings of models were applied and the corresponding results were compared and analyzed in terms of training cost and prediction quality. The preliminary results indicate that the ML-enabled forecast model can serve as a supplementary source for people who need to know finer-grained whether condition. To improve the quality of the ML forecasting models, besides more fine-tuning and algorithms renovation, large volume of long-term historical weather data are critical since climate changes to a large extent, possess subtle periodical characteristics." @default.
- W2968117006 created "2019-08-22" @default.
- W2968117006 creator A5032078989 @default.
- W2968117006 creator A5068946191 @default.
- W2968117006 date "2019-06-22" @default.
- W2968117006 modified "2023-10-16" @default.
- W2968117006 title "Realizing Specific Weather Forecast through Machine Learning Enabled Prediction Model" @default.
- W2968117006 cites W2096809505 @default.
- W2968117006 cites W2097666287 @default.
- W2968117006 doi "https://doi.org/10.1145/3341069.3341084" @default.
- W2968117006 hasPublicationYear "2019" @default.
- W2968117006 type Work @default.
- W2968117006 sameAs 2968117006 @default.
- W2968117006 citedByCount "0" @default.
- W2968117006 crossrefType "proceedings-article" @default.
- W2968117006 hasAuthorship W2968117006A5032078989 @default.
- W2968117006 hasAuthorship W2968117006A5068946191 @default.
- W2968117006 hasConcept C119857082 @default.
- W2968117006 hasConcept C121332964 @default.
- W2968117006 hasConcept C153294291 @default.
- W2968117006 hasConcept C154945302 @default.
- W2968117006 hasConcept C21001229 @default.
- W2968117006 hasConcept C2987469573 @default.
- W2968117006 hasConcept C41008148 @default.
- W2968117006 hasConcept C45804977 @default.
- W2968117006 hasConcept C67186912 @default.
- W2968117006 hasConcept C77088390 @default.
- W2968117006 hasConceptScore W2968117006C119857082 @default.
- W2968117006 hasConceptScore W2968117006C121332964 @default.
- W2968117006 hasConceptScore W2968117006C153294291 @default.
- W2968117006 hasConceptScore W2968117006C154945302 @default.
- W2968117006 hasConceptScore W2968117006C21001229 @default.
- W2968117006 hasConceptScore W2968117006C2987469573 @default.
- W2968117006 hasConceptScore W2968117006C41008148 @default.
- W2968117006 hasConceptScore W2968117006C45804977 @default.
- W2968117006 hasConceptScore W2968117006C67186912 @default.
- W2968117006 hasConceptScore W2968117006C77088390 @default.
- W2968117006 hasLocation W29681170061 @default.
- W2968117006 hasOpenAccess W2968117006 @default.
- W2968117006 hasPrimaryLocation W29681170061 @default.
- W2968117006 hasRelatedWork W2085677053 @default.
- W2968117006 hasRelatedWork W2979536015 @default.
- W2968117006 hasRelatedWork W3006098612 @default.
- W2968117006 hasRelatedWork W3021464272 @default.
- W2968117006 hasRelatedWork W3160244858 @default.
- W2968117006 hasRelatedWork W3175039219 @default.
- W2968117006 hasRelatedWork W3206760825 @default.
- W2968117006 hasRelatedWork W4210762563 @default.
- W2968117006 hasRelatedWork W4220851079 @default.
- W2968117006 hasRelatedWork W4221031036 @default.
- W2968117006 isParatext "false" @default.
- W2968117006 isRetracted "false" @default.
- W2968117006 magId "2968117006" @default.
- W2968117006 workType "article" @default.