Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968147206> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2968147206 endingPage "012031" @default.
- W2968147206 startingPage "012031" @default.
- W2968147206 abstract "In the past decades, structural health monitoring (SHM) has become an emerging research area for globally monitoring expensive aircraft and bridge structures. This paper presents the application of stochastic fractal search (SFS) algorithm and its chaotic-enhanced variants to train feedforward neural networks (FNNs) for monitoring an aircraft structure based on vibration data. An experimental spectral testing was carried out to obtain the normal and damaged condition data of a laboratory stiffened panel structure which imitated wingbox of an aircraft. Added mass as pseudo-fault was employed to simulate damage condition with three different damage levels at three different locations. Vibration signature features were generated based on measured frequency response functions (FRFs) and principle component analysis (PCA). Then, metaheuristic-based FNNs approach were applied to localize and predict the severity of damage on the structure. The results reveal that the proposed approach produces high classification and localization accuracy as parameters of the FNNs were optimized systematically using metaheuristic algorithms. In conclusion, the Sine chaos-enhanced SFS algorithm highlights better convergence performance and results accuracy compared to other contested metaheuristic approaches." @default.
- W2968147206 created "2019-08-22" @default.
- W2968147206 creator A5022020196 @default.
- W2968147206 creator A5032225518 @default.
- W2968147206 creator A5051181934 @default.
- W2968147206 creator A5066857012 @default.
- W2968147206 creator A5070435478 @default.
- W2968147206 date "2019-08-01" @default.
- W2968147206 modified "2023-09-27" @default.
- W2968147206 title "Training Feedforward Neural Networks for Structural Health Monitoring of an Aircraft Structure" @default.
- W2968147206 cites W196871588 @default.
- W2968147206 cites W1977457976 @default.
- W2968147206 cites W2261079877 @default.
- W2968147206 cites W2572372675 @default.
- W2968147206 cites W2907227550 @default.
- W2968147206 cites W4235292672 @default.
- W2968147206 doi "https://doi.org/10.1088/1742-6596/1262/1/012031" @default.
- W2968147206 hasPublicationYear "2019" @default.
- W2968147206 type Work @default.
- W2968147206 sameAs 2968147206 @default.
- W2968147206 citedByCount "0" @default.
- W2968147206 crossrefType "journal-article" @default.
- W2968147206 hasAuthorship W2968147206A5022020196 @default.
- W2968147206 hasAuthorship W2968147206A5032225518 @default.
- W2968147206 hasAuthorship W2968147206A5051181934 @default.
- W2968147206 hasAuthorship W2968147206A5066857012 @default.
- W2968147206 hasAuthorship W2968147206A5070435478 @default.
- W2968147206 hasBestOaLocation W29681472061 @default.
- W2968147206 hasConcept C109718341 @default.
- W2968147206 hasConcept C11413529 @default.
- W2968147206 hasConcept C119599485 @default.
- W2968147206 hasConcept C121332964 @default.
- W2968147206 hasConcept C127413603 @default.
- W2968147206 hasConcept C153180895 @default.
- W2968147206 hasConcept C154945302 @default.
- W2968147206 hasConcept C162324750 @default.
- W2968147206 hasConcept C198394728 @default.
- W2968147206 hasConcept C2775846686 @default.
- W2968147206 hasConcept C2776247918 @default.
- W2968147206 hasConcept C2777052490 @default.
- W2968147206 hasConcept C2777303404 @default.
- W2968147206 hasConcept C41008148 @default.
- W2968147206 hasConcept C47702885 @default.
- W2968147206 hasConcept C50522688 @default.
- W2968147206 hasConcept C50644808 @default.
- W2968147206 hasConcept C62520636 @default.
- W2968147206 hasConcept C66938386 @default.
- W2968147206 hasConceptScore W2968147206C109718341 @default.
- W2968147206 hasConceptScore W2968147206C11413529 @default.
- W2968147206 hasConceptScore W2968147206C119599485 @default.
- W2968147206 hasConceptScore W2968147206C121332964 @default.
- W2968147206 hasConceptScore W2968147206C127413603 @default.
- W2968147206 hasConceptScore W2968147206C153180895 @default.
- W2968147206 hasConceptScore W2968147206C154945302 @default.
- W2968147206 hasConceptScore W2968147206C162324750 @default.
- W2968147206 hasConceptScore W2968147206C198394728 @default.
- W2968147206 hasConceptScore W2968147206C2775846686 @default.
- W2968147206 hasConceptScore W2968147206C2776247918 @default.
- W2968147206 hasConceptScore W2968147206C2777052490 @default.
- W2968147206 hasConceptScore W2968147206C2777303404 @default.
- W2968147206 hasConceptScore W2968147206C41008148 @default.
- W2968147206 hasConceptScore W2968147206C47702885 @default.
- W2968147206 hasConceptScore W2968147206C50522688 @default.
- W2968147206 hasConceptScore W2968147206C50644808 @default.
- W2968147206 hasConceptScore W2968147206C62520636 @default.
- W2968147206 hasConceptScore W2968147206C66938386 @default.
- W2968147206 hasLocation W29681472061 @default.
- W2968147206 hasOpenAccess W2968147206 @default.
- W2968147206 hasPrimaryLocation W29681472061 @default.
- W2968147206 hasRelatedWork W1533959244 @default.
- W2968147206 hasRelatedWork W1598567836 @default.
- W2968147206 hasRelatedWork W1976136352 @default.
- W2968147206 hasRelatedWork W1995940536 @default.
- W2968147206 hasRelatedWork W2356755074 @default.
- W2968147206 hasRelatedWork W2360829920 @default.
- W2968147206 hasRelatedWork W2380955682 @default.
- W2968147206 hasRelatedWork W2392110728 @default.
- W2968147206 hasRelatedWork W3108659982 @default.
- W2968147206 hasRelatedWork W4283795028 @default.
- W2968147206 hasVolume "1262" @default.
- W2968147206 isParatext "false" @default.
- W2968147206 isRetracted "false" @default.
- W2968147206 magId "2968147206" @default.
- W2968147206 workType "article" @default.