Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968149069> ?p ?o ?g. }
- W2968149069 endingPage "102792" @default.
- W2968149069 startingPage "102792" @default.
- W2968149069 abstract "Articulated skeleton extraction or learning has been extensively studied for 2D (e.g., images and video) and 3D (e.g., volume sequences, motion capture, and mesh sequences) data. Nevertheless, robustly and accurately learning 3D articulated skeletons from point set sequences captured by a single consumer-grade depth camera still remains challenging, since such data are often corrupted with substantial noise and outliers. Relatively few approaches have been proposed to tackle this problem. In this paper, we present a novel unsupervised framework to address this issue. Specifically, we first build one-to-one point correspondences among the point cloud frames in a sequence with our non-rigid point cloud registration algorithm. We then generate a skeleton involving a reasonable number of joints and bones with our skeletal structure extraction algorithm. We lastly present an iterative Linear Blend Skinning based algorithm for accurate joints learning. At the end, our method can learn a quality articulated skeleton from a single 3D point sequence possibly corrupted with noise and outliers. Through qualitative and quantitative evaluations on both publicly available data and in-house Kinect-captured data, we show that our unsupervised approach soundly outperforms state of the art techniques in terms of both quality (i.e., visual) and accuracy (i.e., Euclidean distance error metric). Moreover, the poses of our extracted skeletons are even comparable to those by KinectSDK, a well-known supervised pose estimation technique; for example, our method and KinectSDK achieves similar distance errors of 0.0497 and 0.0521." @default.
- W2968149069 created "2019-08-22" @default.
- W2968149069 creator A5019288783 @default.
- W2968149069 creator A5024170961 @default.
- W2968149069 creator A5026683388 @default.
- W2968149069 creator A5045828619 @default.
- W2968149069 creator A5078926582 @default.
- W2968149069 creator A5081222445 @default.
- W2968149069 date "2019-11-01" @default.
- W2968149069 modified "2023-10-12" @default.
- W2968149069 title "3D articulated skeleton extraction using a single consumer-grade depth camera" @default.
- W2968149069 cites W1965805571 @default.
- W2968149069 cites W1972464678 @default.
- W2968149069 cites W1985290145 @default.
- W2968149069 cites W1988200254 @default.
- W2968149069 cites W1992855374 @default.
- W2968149069 cites W1993280531 @default.
- W2968149069 cites W1999728372 @default.
- W2968149069 cites W2009137893 @default.
- W2968149069 cites W2010512491 @default.
- W2968149069 cites W2027087416 @default.
- W2968149069 cites W2031751002 @default.
- W2968149069 cites W2034943672 @default.
- W2968149069 cites W2074178568 @default.
- W2968149069 cites W2105148880 @default.
- W2968149069 cites W2108107014 @default.
- W2968149069 cites W2113148808 @default.
- W2968149069 cites W2124141313 @default.
- W2968149069 cites W2134236847 @default.
- W2968149069 cites W2134810690 @default.
- W2968149069 cites W2137940226 @default.
- W2968149069 cites W2152005648 @default.
- W2968149069 cites W2160431995 @default.
- W2968149069 cites W2171490473 @default.
- W2968149069 cites W2224196924 @default.
- W2968149069 cites W2261434820 @default.
- W2968149069 cites W2315081432 @default.
- W2968149069 cites W2461005315 @default.
- W2968149069 cites W2506886870 @default.
- W2968149069 cites W2515603221 @default.
- W2968149069 cites W2552247836 @default.
- W2968149069 cites W2792345332 @default.
- W2968149069 cites W2894957992 @default.
- W2968149069 cites W3136970581 @default.
- W2968149069 cites W4246818198 @default.
- W2968149069 doi "https://doi.org/10.1016/j.cviu.2019.102792" @default.
- W2968149069 hasPublicationYear "2019" @default.
- W2968149069 type Work @default.
- W2968149069 sameAs 2968149069 @default.
- W2968149069 citedByCount "15" @default.
- W2968149069 countsByYear W29681490692019 @default.
- W2968149069 countsByYear W29681490692020 @default.
- W2968149069 countsByYear W29681490692021 @default.
- W2968149069 countsByYear W29681490692022 @default.
- W2968149069 countsByYear W29681490692023 @default.
- W2968149069 crossrefType "journal-article" @default.
- W2968149069 hasAuthorship W2968149069A5019288783 @default.
- W2968149069 hasAuthorship W2968149069A5024170961 @default.
- W2968149069 hasAuthorship W2968149069A5026683388 @default.
- W2968149069 hasAuthorship W2968149069A5045828619 @default.
- W2968149069 hasAuthorship W2968149069A5078926582 @default.
- W2968149069 hasAuthorship W2968149069A5081222445 @default.
- W2968149069 hasBestOaLocation W29681490691 @default.
- W2968149069 hasConcept C115961682 @default.
- W2968149069 hasConcept C131979681 @default.
- W2968149069 hasConcept C153180895 @default.
- W2968149069 hasConcept C154945302 @default.
- W2968149069 hasConcept C162324750 @default.
- W2968149069 hasConcept C176217482 @default.
- W2968149069 hasConcept C18969341 @default.
- W2968149069 hasConcept C195958017 @default.
- W2968149069 hasConcept C199360897 @default.
- W2968149069 hasConcept C21547014 @default.
- W2968149069 hasConcept C2524010 @default.
- W2968149069 hasConcept C28719098 @default.
- W2968149069 hasConcept C31972630 @default.
- W2968149069 hasConcept C33923547 @default.
- W2968149069 hasConcept C41008148 @default.
- W2968149069 hasConcept C52102323 @default.
- W2968149069 hasConcept C79337645 @default.
- W2968149069 hasConcept C99498987 @default.
- W2968149069 hasConceptScore W2968149069C115961682 @default.
- W2968149069 hasConceptScore W2968149069C131979681 @default.
- W2968149069 hasConceptScore W2968149069C153180895 @default.
- W2968149069 hasConceptScore W2968149069C154945302 @default.
- W2968149069 hasConceptScore W2968149069C162324750 @default.
- W2968149069 hasConceptScore W2968149069C176217482 @default.
- W2968149069 hasConceptScore W2968149069C18969341 @default.
- W2968149069 hasConceptScore W2968149069C195958017 @default.
- W2968149069 hasConceptScore W2968149069C199360897 @default.
- W2968149069 hasConceptScore W2968149069C21547014 @default.
- W2968149069 hasConceptScore W2968149069C2524010 @default.
- W2968149069 hasConceptScore W2968149069C28719098 @default.
- W2968149069 hasConceptScore W2968149069C31972630 @default.
- W2968149069 hasConceptScore W2968149069C33923547 @default.
- W2968149069 hasConceptScore W2968149069C41008148 @default.
- W2968149069 hasConceptScore W2968149069C52102323 @default.
- W2968149069 hasConceptScore W2968149069C79337645 @default.