Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968156929> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2968156929 abstract "The cyberspace continues to evolve more complex than ever anticipated, and same is the case with security dynamics there. As our dependence on cyberspace is increasing day-by-day, regular and systematic monitoring of cyberspace security has become very essential. A darknet is one such monitoring framework for deducing malicious activities and the attack patterns in the cyberspace. Darknet traffic is the spurious traffic observed in the empty address space, i.e., a set of globally valid Internet Protocol (IP) addresses which are not assigned to any hosts or devices. In an ideal secure network system, no traffic is expected to arrive on such a darknet IP space. However, in reality, noticeable amount of traffic is observed in this space primarily due to the Internet wide malicious activities, attacks and sometimes due to the network level misconfigurations. Analyzing such traffic and finding distinct attack patterns present in them can be a potential mechanism to infer the attack trends in the real network. In this paper, the existing Basic and Extended AGgregate and Mode (AGM) data formats for darknet traffic analysis is studied and an efficient 29-tuple Numerical AGM data format suitable for analyzing the source IP address validated TCP connections (three-way handshake) is proposed to find attack patterns in this traffic using Mean Shift clustering algorithm. Analyzing the patterns detected from the clusters results in providing the traces of various attacks such as Mirai bot, SQL attack, and brute force. Analyzing the source IP validated TCP, darknet traffic is a potential technique in Cyber security to find the attack trends in the network." @default.
- W2968156929 created "2019-08-22" @default.
- W2968156929 creator A5039235804 @default.
- W2968156929 creator A5046955287 @default.
- W2968156929 creator A5090342082 @default.
- W2968156929 date "2019-08-14" @default.
- W2968156929 modified "2023-09-25" @default.
- W2968156929 title "Darknet Traffic Analysis and Classification Using Numerical AGM and Mean Shift Clustering Algorithm" @default.
- W2968156929 cites W1966809779 @default.
- W2968156929 cites W2005703400 @default.
- W2968156929 cites W2022686119 @default.
- W2968156929 cites W2049534694 @default.
- W2968156929 cites W2071128523 @default.
- W2968156929 cites W2152436591 @default.
- W2968156929 cites W2158060559 @default.
- W2968156929 cites W2171331105 @default.
- W2968156929 cites W2294798173 @default.
- W2968156929 cites W2343978497 @default.
- W2968156929 cites W2481715940 @default.
- W2968156929 cites W2725791879 @default.
- W2968156929 cites W2733765803 @default.
- W2968156929 cites W4231029117 @default.
- W2968156929 cites W4246396312 @default.
- W2968156929 doi "https://doi.org/10.1007/s42979-019-0016-x" @default.
- W2968156929 hasPublicationYear "2019" @default.
- W2968156929 type Work @default.
- W2968156929 sameAs 2968156929 @default.
- W2968156929 citedByCount "7" @default.
- W2968156929 countsByYear W29681569292020 @default.
- W2968156929 countsByYear W29681569292021 @default.
- W2968156929 countsByYear W29681569292022 @default.
- W2968156929 countsByYear W29681569292023 @default.
- W2968156929 crossrefType "journal-article" @default.
- W2968156929 hasAuthorship W2968156929A5039235804 @default.
- W2968156929 hasAuthorship W2968156929A5046955287 @default.
- W2968156929 hasAuthorship W2968156929A5090342082 @default.
- W2968156929 hasBestOaLocation W29681569291 @default.
- W2968156929 hasConcept C110875604 @default.
- W2968156929 hasConcept C124101348 @default.
- W2968156929 hasConcept C136764020 @default.
- W2968156929 hasConcept C151319957 @default.
- W2968156929 hasConcept C154945302 @default.
- W2968156929 hasConcept C2778000800 @default.
- W2968156929 hasConcept C2781241145 @default.
- W2968156929 hasConcept C2781317605 @default.
- W2968156929 hasConcept C31258907 @default.
- W2968156929 hasConcept C38652104 @default.
- W2968156929 hasConcept C41008148 @default.
- W2968156929 hasConcept C63969886 @default.
- W2968156929 hasConcept C73555534 @default.
- W2968156929 hasConceptScore W2968156929C110875604 @default.
- W2968156929 hasConceptScore W2968156929C124101348 @default.
- W2968156929 hasConceptScore W2968156929C136764020 @default.
- W2968156929 hasConceptScore W2968156929C151319957 @default.
- W2968156929 hasConceptScore W2968156929C154945302 @default.
- W2968156929 hasConceptScore W2968156929C2778000800 @default.
- W2968156929 hasConceptScore W2968156929C2781241145 @default.
- W2968156929 hasConceptScore W2968156929C2781317605 @default.
- W2968156929 hasConceptScore W2968156929C31258907 @default.
- W2968156929 hasConceptScore W2968156929C38652104 @default.
- W2968156929 hasConceptScore W2968156929C41008148 @default.
- W2968156929 hasConceptScore W2968156929C63969886 @default.
- W2968156929 hasConceptScore W2968156929C73555534 @default.
- W2968156929 hasIssue "1" @default.
- W2968156929 hasLocation W29681569291 @default.
- W2968156929 hasOpenAccess W2968156929 @default.
- W2968156929 hasPrimaryLocation W29681569291 @default.
- W2968156929 hasRelatedWork W1494299001 @default.
- W2968156929 hasRelatedWork W1495633614 @default.
- W2968156929 hasRelatedWork W2044465224 @default.
- W2968156929 hasRelatedWork W2063738382 @default.
- W2968156929 hasRelatedWork W2133379506 @default.
- W2968156929 hasRelatedWork W2163880630 @default.
- W2968156929 hasRelatedWork W2783826416 @default.
- W2968156929 hasRelatedWork W2899585853 @default.
- W2968156929 hasRelatedWork W3047331802 @default.
- W2968156929 hasRelatedWork W4247088668 @default.
- W2968156929 hasVolume "1" @default.
- W2968156929 isParatext "false" @default.
- W2968156929 isRetracted "false" @default.
- W2968156929 magId "2968156929" @default.
- W2968156929 workType "article" @default.