Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968163882> ?p ?o ?g. }
- W2968163882 endingPage "122453" @default.
- W2968163882 startingPage "122453" @default.
- W2968163882 abstract "Abstract Lattice Boltzmann Method (LBM) is a statistical approach for simulating fluid flow in porous media. LBM is a method based on the kinetic theory of gases and thus is a very powerful tool for simulating such flows. Fluid flow in a nanochannel containing porous media was simulated in this study. The effect of porosity was considered as loss terms in the momentum equations. The flow domain was solved at a high Knudsen number (Kn) of 10 using a new equation for relaxation time to predict increased collisions of molecules to the wall at high Knudsen numbers. No slip condition cannot be applied at high Knudsen numbers due to wall slip. First, the results were calculated at low Knudsen numbers and compared with existing results. Then the results were calculated at high Knudsen numbers. Flow characteristics at different porosities were examined at different inlet to outlet pressure ratios and Knudsen numbers. According to the results, gas permeability and wall slip velocity increased with increasing the Knudsen number, but the maximum axial velocity at the channel center decreased. The wall slip velocity, however, increased by decreasing porosity (increasing barriers). With increasing the Knudsen number at a constant pressure ratio and a certain porosity, the volumetric flow rate decreased at Knudsen numbers below 0.1 and then began to increase at Kn>0.1. The volumetric flow rate increased with increasing porosity. Moreover, the Darcy coefficient increased with increasing the Knudsen number. With an increase in the average pressure along the channel, both permeability and Darcy coefficient decreased. The Darcy coefficient in the slip flow regime varied linearly, but showed a second-order behavior in the transient flow. The results were presented as diagrams including permeability versus Knudsen number, permeability versus porosity and volumetric flow rate as a function of Knudsen number." @default.
- W2968163882 created "2019-08-22" @default.
- W2968163882 creator A5003968607 @default.
- W2968163882 creator A5023079113 @default.
- W2968163882 creator A5028219611 @default.
- W2968163882 creator A5067224059 @default.
- W2968163882 date "2019-12-01" @default.
- W2968163882 modified "2023-10-01" @default.
- W2968163882 title "Improve the performance of lattice Boltzmann method for a porous nanoscale transient flow by provide a new modified relaxation time equation" @default.
- W2968163882 cites W1974681195 @default.
- W2968163882 cites W1978283088 @default.
- W2968163882 cites W1985036921 @default.
- W2968163882 cites W2002285007 @default.
- W2968163882 cites W2003326827 @default.
- W2968163882 cites W2004532136 @default.
- W2968163882 cites W2006957913 @default.
- W2968163882 cites W2009223798 @default.
- W2968163882 cites W2009951639 @default.
- W2968163882 cites W2012075158 @default.
- W2968163882 cites W2020644081 @default.
- W2968163882 cites W2021109748 @default.
- W2968163882 cites W2026214593 @default.
- W2968163882 cites W2033690858 @default.
- W2968163882 cites W2045556270 @default.
- W2968163882 cites W2050537022 @default.
- W2968163882 cites W2053411296 @default.
- W2968163882 cites W2054215124 @default.
- W2968163882 cites W2055208927 @default.
- W2968163882 cites W2060283935 @default.
- W2968163882 cites W2072596508 @default.
- W2968163882 cites W2076323369 @default.
- W2968163882 cites W2077266528 @default.
- W2968163882 cites W2081962604 @default.
- W2968163882 cites W2084386683 @default.
- W2968163882 cites W2089577161 @default.
- W2968163882 cites W2112622931 @default.
- W2968163882 cites W2115207317 @default.
- W2968163882 cites W2130946398 @default.
- W2968163882 cites W2147237674 @default.
- W2968163882 cites W2151177494 @default.
- W2968163882 cites W2167518768 @default.
- W2968163882 cites W2169751561 @default.
- W2968163882 cites W2208196536 @default.
- W2968163882 cites W2409206186 @default.
- W2968163882 cites W2466295450 @default.
- W2968163882 cites W2469022158 @default.
- W2968163882 cites W2573018762 @default.
- W2968163882 cites W2591772253 @default.
- W2968163882 cites W2591864409 @default.
- W2968163882 cites W2600474252 @default.
- W2968163882 cites W2604250292 @default.
- W2968163882 cites W2627063079 @default.
- W2968163882 cites W2744252449 @default.
- W2968163882 cites W2766151092 @default.
- W2968163882 cites W2766855949 @default.
- W2968163882 cites W2767776408 @default.
- W2968163882 cites W2788777833 @default.
- W2968163882 cites W2789349871 @default.
- W2968163882 cites W2789482719 @default.
- W2968163882 cites W2790595991 @default.
- W2968163882 cites W2795634501 @default.
- W2968163882 cites W2808309329 @default.
- W2968163882 cites W2809269743 @default.
- W2968163882 cites W2809509636 @default.
- W2968163882 cites W2889421695 @default.
- W2968163882 cites W2890330125 @default.
- W2968163882 cites W2895369152 @default.
- W2968163882 cites W2898326669 @default.
- W2968163882 cites W2901111597 @default.
- W2968163882 cites W2905780621 @default.
- W2968163882 cites W2914461711 @default.
- W2968163882 cites W2914722677 @default.
- W2968163882 cites W2914914118 @default.
- W2968163882 cites W2914937742 @default.
- W2968163882 cites W2920819935 @default.
- W2968163882 cites W2920937325 @default.
- W2968163882 cites W2921062082 @default.
- W2968163882 cites W2922075846 @default.
- W2968163882 cites W573143683 @default.
- W2968163882 doi "https://doi.org/10.1016/j.physa.2019.122453" @default.
- W2968163882 hasPublicationYear "2019" @default.
- W2968163882 type Work @default.
- W2968163882 sameAs 2968163882 @default.
- W2968163882 citedByCount "16" @default.
- W2968163882 countsByYear W29681638822020 @default.
- W2968163882 countsByYear W29681638822021 @default.
- W2968163882 countsByYear W29681638822022 @default.
- W2968163882 countsByYear W29681638822023 @default.
- W2968163882 crossrefType "journal-article" @default.
- W2968163882 hasAuthorship W2968163882A5003968607 @default.
- W2968163882 hasAuthorship W2968163882A5023079113 @default.
- W2968163882 hasAuthorship W2968163882A5028219611 @default.
- W2968163882 hasAuthorship W2968163882A5067224059 @default.
- W2968163882 hasConcept C105569014 @default.
- W2968163882 hasConcept C111919701 @default.
- W2968163882 hasConcept C121332964 @default.
- W2968163882 hasConcept C121864883 @default.
- W2968163882 hasConcept C153294291 @default.