Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968168094> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2968168094 endingPage "1" @default.
- W2968168094 startingPage "1" @default.
- W2968168094 abstract "Diferent linear models have been proposed to establish a link between an auditory stimulus and the neurophysiological response obtained through electroencephalography (EEG). We investigate if non-linear mappings can be modeled with deep neural networks trained on continuous speech envelopes and EEG data obtained in an auditory attention two-speaker scenario. An artificial neural network was trained to predict the EEG response related to the attended and unattended speech envelopes. After training, the properties of the DNN-based model are analyzed by measuring the transfer function between input envelopes and predicted EEG signals by using click-like stimuli and frequency sweeps as input patterns. Using sweep responses allows to separate the linear and nonlinear response components also with respect to attention. The responses from the model trained on normal speech resemble event-related potentials despite the fact that the DNN was not trained to reproduce such patterns. These responses are modulated by attention, since we obtain significantly lower amplitudes at latencies of 110 ms, 170 ms and 300 ms after stimulus presentation for unattended processing in contrast to the attended. The comparison of linear and nonlinear components indicates that the largest contribution arises from linear processing (75%), while the remaining 25% are attributed to nonlinear processes in the model. Further, a spectral analysis showed a stronger 5 Hz component in modeled EEG for attended in contrast to unattended predictions. The results indicate that the artificial neural network produces responses consistent with recent findings and presents a new approach for quantifying the model properties." @default.
- W2968168094 created "2019-08-22" @default.
- W2968168094 creator A5038806633 @default.
- W2968168094 creator A5066921519 @default.
- W2968168094 creator A5067491941 @default.
- W2968168094 creator A5076869895 @default.
- W2968168094 creator A5091589133 @default.
- W2968168094 date "2019-08-13" @default.
- W2968168094 modified "2023-10-14" @default.
- W2968168094 title "Modeling Nonlinear Transfer Functions from Speech Envelopes to Encephalography with Neural Networks" @default.
- W2968168094 cites W2090636477 @default.
- W2968168094 cites W2137172783 @default.
- W2968168094 cites W2280122039 @default.
- W2968168094 cites W2283417180 @default.
- W2968168094 cites W2547553232 @default.
- W2968168094 cites W2556260580 @default.
- W2968168094 cites W2736507657 @default.
- W2968168094 doi "https://doi.org/10.5539/ijps.v11n4p1" @default.
- W2968168094 hasPublicationYear "2019" @default.
- W2968168094 type Work @default.
- W2968168094 sameAs 2968168094 @default.
- W2968168094 citedByCount "2" @default.
- W2968168094 countsByYear W29681680942020 @default.
- W2968168094 countsByYear W29681680942022 @default.
- W2968168094 crossrefType "journal-article" @default.
- W2968168094 hasAuthorship W2968168094A5038806633 @default.
- W2968168094 hasAuthorship W2968168094A5066921519 @default.
- W2968168094 hasAuthorship W2968168094A5067491941 @default.
- W2968168094 hasAuthorship W2968168094A5076869895 @default.
- W2968168094 hasAuthorship W2968168094A5091589133 @default.
- W2968168094 hasBestOaLocation W29681680941 @default.
- W2968168094 hasConcept C119599485 @default.
- W2968168094 hasConcept C119857082 @default.
- W2968168094 hasConcept C121332964 @default.
- W2968168094 hasConcept C127413603 @default.
- W2968168094 hasConcept C152478114 @default.
- W2968168094 hasConcept C153180895 @default.
- W2968168094 hasConcept C154945302 @default.
- W2968168094 hasConcept C15744967 @default.
- W2968168094 hasConcept C158622935 @default.
- W2968168094 hasConcept C163175372 @default.
- W2968168094 hasConcept C169760540 @default.
- W2968168094 hasConcept C180747234 @default.
- W2968168094 hasConcept C2776502983 @default.
- W2968168094 hasConcept C2779918689 @default.
- W2968168094 hasConcept C28490314 @default.
- W2968168094 hasConcept C41008148 @default.
- W2968168094 hasConcept C50644808 @default.
- W2968168094 hasConcept C522805319 @default.
- W2968168094 hasConcept C62520636 @default.
- W2968168094 hasConcept C81299745 @default.
- W2968168094 hasConceptScore W2968168094C119599485 @default.
- W2968168094 hasConceptScore W2968168094C119857082 @default.
- W2968168094 hasConceptScore W2968168094C121332964 @default.
- W2968168094 hasConceptScore W2968168094C127413603 @default.
- W2968168094 hasConceptScore W2968168094C152478114 @default.
- W2968168094 hasConceptScore W2968168094C153180895 @default.
- W2968168094 hasConceptScore W2968168094C154945302 @default.
- W2968168094 hasConceptScore W2968168094C15744967 @default.
- W2968168094 hasConceptScore W2968168094C158622935 @default.
- W2968168094 hasConceptScore W2968168094C163175372 @default.
- W2968168094 hasConceptScore W2968168094C169760540 @default.
- W2968168094 hasConceptScore W2968168094C180747234 @default.
- W2968168094 hasConceptScore W2968168094C2776502983 @default.
- W2968168094 hasConceptScore W2968168094C2779918689 @default.
- W2968168094 hasConceptScore W2968168094C28490314 @default.
- W2968168094 hasConceptScore W2968168094C41008148 @default.
- W2968168094 hasConceptScore W2968168094C50644808 @default.
- W2968168094 hasConceptScore W2968168094C522805319 @default.
- W2968168094 hasConceptScore W2968168094C62520636 @default.
- W2968168094 hasConceptScore W2968168094C81299745 @default.
- W2968168094 hasIssue "4" @default.
- W2968168094 hasLocation W29681680941 @default.
- W2968168094 hasOpenAccess W2968168094 @default.
- W2968168094 hasPrimaryLocation W29681680941 @default.
- W2968168094 hasRelatedWork W1826847759 @default.
- W2968168094 hasRelatedWork W2013181374 @default.
- W2968168094 hasRelatedWork W2066872450 @default.
- W2968168094 hasRelatedWork W2100133835 @default.
- W2968168094 hasRelatedWork W2346634343 @default.
- W2968168094 hasRelatedWork W2373051959 @default.
- W2968168094 hasRelatedWork W2387959708 @default.
- W2968168094 hasRelatedWork W2982566651 @default.
- W2968168094 hasRelatedWork W3128417418 @default.
- W2968168094 hasRelatedWork W4313203779 @default.
- W2968168094 hasVolume "11" @default.
- W2968168094 isParatext "false" @default.
- W2968168094 isRetracted "false" @default.
- W2968168094 magId "2968168094" @default.
- W2968168094 workType "article" @default.