Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968177029> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2968177029 abstract "Abstract BACKGROUND AND OBJECTIVE: Brain metastases have been found to account for one-fourth of all cancer metastases seen in clinics. Magnetic resonance imaging (MRI) is widely used for detecting brain metastases. Accurate detection of the brain metastases is critical to design radiotherapy to treat the cancer and monitor their progression or response to the therapy and prognosis. However, finding metastases on brain MRI is very challenging as many metastases are small and manifest as objects of weak contrast on the images. In this work we present a deep learning approach integrated with a classification scheme to detect cancer metastases to the brain on MRI. MATERIALS AND METHODS: We retrospectively extracted 101 metastases patients, equal to 1535 metastases on 10192 slices of images in a total of 336 scans from our PACS and manually marked the lesions on T1-weighted contrast enhanced MRI as the ground-truth. We then randomly separated the cases into training, validation, and test sets for developing and optimizing the deep learning neural network. We designed a 2-step computer-aided detection (CAD) pipeline by first applying a fast region-based convolutional neural network method (R-CNN) to sequentially process each slice of an axial brain MRI to find abnormal hyper-intensity that may correspond to a brain metastasis and, second, applying a random under sampling boost (RUSBoost) classification method to reduce the false positive metastases. RESULTS: The computational pipeline was tested on real brain images. A sensitivity of 97.28% and false positive rate of 36.25 per scan over the images were achieved by using the proposed method. CONCLUSION: Our results demonstrated the deep learning-based method can detect metastases in very challenging cases and can serve as CAD tool to help radiologists interpret brain MRIs in a time-constrained environment." @default.
- W2968177029 created "2019-08-22" @default.
- W2968177029 creator A5026092790 @default.
- W2968177029 creator A5030169492 @default.
- W2968177029 creator A5042410164 @default.
- W2968177029 creator A5044388347 @default.
- W2968177029 creator A5055471007 @default.
- W2968177029 creator A5073315969 @default.
- W2968177029 creator A5073577367 @default.
- W2968177029 date "2019-08-01" @default.
- W2968177029 modified "2023-09-22" @default.
- W2968177029 title "OTHR-13. A DEEP LEARNING APPROACH TO DETECT CANCER METASTASES TO THE BRAIN IN MRI" @default.
- W2968177029 doi "https://doi.org/10.1093/noajnl/vdz014.090" @default.
- W2968177029 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7213356" @default.
- W2968177029 hasPublicationYear "2019" @default.
- W2968177029 type Work @default.
- W2968177029 sameAs 2968177029 @default.
- W2968177029 citedByCount "0" @default.
- W2968177029 crossrefType "journal-article" @default.
- W2968177029 hasAuthorship W2968177029A5026092790 @default.
- W2968177029 hasAuthorship W2968177029A5030169492 @default.
- W2968177029 hasAuthorship W2968177029A5042410164 @default.
- W2968177029 hasAuthorship W2968177029A5044388347 @default.
- W2968177029 hasAuthorship W2968177029A5055471007 @default.
- W2968177029 hasAuthorship W2968177029A5073315969 @default.
- W2968177029 hasAuthorship W2968177029A5073577367 @default.
- W2968177029 hasBestOaLocation W29681770291 @default.
- W2968177029 hasConcept C108583219 @default.
- W2968177029 hasConcept C121608353 @default.
- W2968177029 hasConcept C126322002 @default.
- W2968177029 hasConcept C154945302 @default.
- W2968177029 hasConcept C2994463257 @default.
- W2968177029 hasConcept C41008148 @default.
- W2968177029 hasConcept C71924100 @default.
- W2968177029 hasConceptScore W2968177029C108583219 @default.
- W2968177029 hasConceptScore W2968177029C121608353 @default.
- W2968177029 hasConceptScore W2968177029C126322002 @default.
- W2968177029 hasConceptScore W2968177029C154945302 @default.
- W2968177029 hasConceptScore W2968177029C2994463257 @default.
- W2968177029 hasConceptScore W2968177029C41008148 @default.
- W2968177029 hasConceptScore W2968177029C71924100 @default.
- W2968177029 hasLocation W29681770291 @default.
- W2968177029 hasLocation W29681770292 @default.
- W2968177029 hasOpenAccess W2968177029 @default.
- W2968177029 hasPrimaryLocation W29681770291 @default.
- W2968177029 hasRelatedWork W1443939293 @default.
- W2968177029 hasRelatedWork W16455882 @default.
- W2968177029 hasRelatedWork W2022181823 @default.
- W2968177029 hasRelatedWork W2041187667 @default.
- W2968177029 hasRelatedWork W2126557147 @default.
- W2968177029 hasRelatedWork W2131643536 @default.
- W2968177029 hasRelatedWork W2142476998 @default.
- W2968177029 hasRelatedWork W2189400177 @default.
- W2968177029 hasRelatedWork W2205029468 @default.
- W2968177029 hasRelatedWork W2260173527 @default.
- W2968177029 hasRelatedWork W2282489067 @default.
- W2968177029 hasRelatedWork W2329104432 @default.
- W2968177029 hasRelatedWork W2337495033 @default.
- W2968177029 hasRelatedWork W2418025193 @default.
- W2968177029 hasRelatedWork W2555262983 @default.
- W2968177029 hasRelatedWork W2804844595 @default.
- W2968177029 hasRelatedWork W2854020365 @default.
- W2968177029 hasRelatedWork W2894600577 @default.
- W2968177029 hasRelatedWork W2899533740 @default.
- W2968177029 hasRelatedWork W3140345622 @default.
- W2968177029 isParatext "false" @default.
- W2968177029 isRetracted "false" @default.
- W2968177029 magId "2968177029" @default.
- W2968177029 workType "article" @default.